
OlympusDAO

Security Review
HickupHH3

7 November 2023

1

Contents
1 Introduction 3

1.1 Audit Scope . 3
1.2 Audit Timeline . 4
1.3 Fix Review . 4
1.4 Auditors Involved . 4

2 Risk Assessment Classification 5

3 Findings Summary 7
3.1 [High] Incorrect amount withdrawn from wrappedPayoutToken 8
3.2 [Info] Consider ensuring reserve.decimals() is equivalent to

wrappedReserve.decimals() . 9
3.3 [Info] Use IStaking.sol instead of inline interfaces 9
3.4 [Gas] Wall and spread checks can be reduced 10
3.5 [Gas] Variables can be made immutable 12
3.6 [Gas] Equality case can be shifted 12
3.7 [Gas] Cache _config.regenObserve 13
3.8 [Gas] Pre-in/decrements cost less gas compared to post-in/decrements 14
3.9 [Gas] _regenerate() can be unchecked 15

4 Disclaimer 17

2

1 Introduction
The purpose of this audit is to review 2 incremental changes to the
Range-Bound Stability (RBS) mechanism:

1. Handling sDAI in TRSRY. Or in general, integration with ERC4626
tokens

2. Using asymmetric spreads + minting OHM tokens in heart.beat() +
trigger a new rebase.

1.1 Audit Scope
The scope consisted of the rbs-v1-4-asymmetric-with-sDAI branch of the
bophades repository at commit hash a95bd5ee0c00f5b45392f1a7600e88a02932a11f.
The contracts found in the src folder that were included in scope were
the following:

File

interfaces/IStaking.sol

modules/RANGE/OlympusRange.sol

modules/RANGE/RANGE.v2.sol

policies/BondCallback.sol

policies/Distributor/Distributor.sol

policies/Distributor/ZeroDistributor.sol

policies/Heart.sol

policies/Operator.sol

policies/interfaces/IOperator.sol

policies/interfaces/IHeart.sol

policies/interfaces/IDistributor.sol

3

1.2 Audit Timeline
The audit was conducted from 1st Nov to 6th Nov.

1.3 Fix Review
A review of the fixes was conducted subsequently on 7th Nov.

1.4 Auditors Involved
HickupHH3

4

2 Risk Assessment Classification
There are 4 possible levels used to assess a vulnerability, with a separate
section for gas optimizations.

High
Directly exploitable vulnerabilities with medium / high likelihood of loss of
user funds, or contract functionality.

Resolving these issues are crucial to ensure the security and functionality
of the contracts.

Medium
Vulnerabilities that relies on external dependencies / conditions to be
met. Potentially leads to a loss of funds or functionality (eg. denial of
service).

Resolving these issues are recommended toavoid undesired consequences.

Low
Issues arising from deviant behaviour than expected, but has no / little
bearing from a security standpoint.

Informational
Issues that relate to security best practices recommendations, grammatical
or styling errors, suggestions for variable/function name improvements
etc. These issues are subjective and can be addressed based on the
client’s discretion.

While these issues may not directly affect the contract’s functionality or
security, addressing them can improve code readability, maintainability,
and overall quality.

5

Gas Optimizations
Suggested changes to the codebase that will help reduce deployment
or runtime gas costs, or to reduce the bytecode size should the limit be
reached.

6

3 Findings Summary

Severity No. of issues

High 1

Medium 0

Low 0

Informational 2

Gas Optimizations 6

Total 9

7

3.1 [High] Incorrect amount withdrawn from
wrappedPayoutToken

Context

BondCallback.sol#L210

Details

The amount withdrawn from wrappedPayoutToken uses the number of
shares (wrappedOutputAmount) insteadof the number of assets (outputAmount_).

There would fewer than expected assets withdrawn.

Impact

The callback caller would receive less tokens than requested.

uint256 wrappedOutputAmount =
wrappedPayoutToken.previewWithdraw(outputAmount_);

TRSRY.withdrawReserves(address(this), wrappedPayoutToken,
wrappedOutputAmount);

wrappedPayoutToken.withdraw(wrappedOutputAmount, msg.sender, address(this));

Mitigation

The correct implementation can be found in Operator.sol#L338-L345.

Response

Fixed in PR#199.

Status

Fixed. The implementation is consistent with Operator.sol.

8

https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/BondCallback.sol##L210
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L338-L345
https://github.com/OlympusDAO/bophades/pull/199/

3.2 [Info] Consider ensuring reserve.decimals() is
equivalent to wrappedReserve.decimals()

Context

Operator.sol#L69

Operator.sol#L112

Details

There is a developer comment that states _wrappedReserveDecimals ==
_reserveDecimals, but this isn’t checked on-chain.

Mitigation

Consider checking that _wrappedReserve.decimals() is equal to _reserveDecimals
in the constructor.

Response

Using ERC4626 ensures that reserve.decimals() == wrappedReserve.decimals(),
but we decided to perform the check just in case. Fixed in PR#199.

Status

Fixed.

3.3 [Info] Use IStaking.sol instead of inline interfaces
Context

IStaking.sol

Distributor.sol#L19-L26

ZeroDistributor.sol#L7-L14

9

https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L69
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L112
https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/interfaces/IStaking.sol
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Distributor/Distributor.sol##L19-L26
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Distributor/ZeroDistributor.sol##L7-L14

Details

The Distributorand ZeroDistributordefines a simplified IStaking interface
with only the unstake() method, while there is a more complete IStaking
interface that is used for tests.

Mitigation

To avoid code duplication, consider defining the simple interface in
IStaking.sol, then a more complete one with the additional methods
that inherit it. The simple onecanbe imported into thedistributor contracts.

Response

Fixed in PR#199.

Status

Fixed.

3.4 [Gas] Wall and spread checks can be reduced
Context

OlympusRange.sol#L31-L38

OlympusRange.sol#L193-L195

Details

The conditions checked are:

1. ONE_PERCENT <= cushionSpread_
2. ONE_PERCENT <= wallSpread_
3. cushionSpread_ <= wallSpread_

10

https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/modules/RANGE/OlympusRange.sol##L31-L38
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/modules/RANGE/OlympusRange.sol##L193-L195

By checking (1) and (3), (2) is enforced. The same logic applies to the
upper bound check for the low side.

Mitigation

The referenced lines can be converted to the following:

if (
- lowSpreads_[0] >= ONE_HUNDRED_PERCENT ||

lowSpreads_[0] < ONE_PERCENT ||
lowSpreads_[1] >= ONE_HUNDRED_PERCENT ||

- lowSpreads_[1] < ONE_PERCENT ||
lowSpreads_[0] > lowSpreads_[1] ||
highSpreads_[0] < ONE_PERCENT ||

- highSpreads_[1] < ONE_PERCENT ||
highSpreads_[0] > highSpreads_[1] ||

) revert RANGE_InvalidParams();

if (
- wallSpread_ < ONE_PERCENT ||

cushionSpread_ < ONE_PERCENT ||
cushionSpread_ > wallSpread_

) revert RANGE_InvalidParams();

- if (wallSpread_ >= ONE_HUNDRED_PERCENT || cushionSpread_ >=
ONE_HUNDRED_PERCENT)

+ if (wallSpread_ >= ONE_HUNDRED_PERCENT)
revert RANGE_InvalidParams();

Response

Good catch, this will be useful as we have had to optimize some stuff in
operator already due to codesize limits. Fixed in PR#199.

Status

Fixed.

11

https://github.com/OlympusDAO/bophades/pull/199/

3.5 [Gas] Variables can be made immutable
Context

Heart.sol#L54

ZeroDistributor.sol#L17

Details

The referenced variables are either missing setters, or can be made
immutable, depending on the intended behaviour.

Mitigation

Either create setters for the referenced variables, or, for reduced gas
costs, declare them as immutable.

Response

Fixed in PR#199.

Status

Fixed. distributor has a setter, while staking is made immutable.

3.6 [Gas] Equality case can be shifted
Context

Heart.sol#L220

12

https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Heart.sol##L54
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Distributor/ZeroDistributor.sol##L17
https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Heart.sol##L220

Details

In the case where currentTime - nextBeat == duration, the calculated
result will be maxReward. Hence, the return value can be directly assigned
to maxReward like the strictly greater case.

Mitigation

return
- currentTime - nextBeat > duration
+ currentTime - nextBeat >= duration

? maxReward
: (uint256(currentTime - nextBeat) * maxReward) / duration;

Response

Fixed in PR#199.

Status

Fixed.

3.7 [Gas] Cache _config.regenObserve

Context

Operator.sol#L580

Operator.sol#L584

Details

As _config is a storage variable, an extra SLOAD can be avoided by
caching the value of _config.regenObserve and used in the referenced
lines.

13

https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L580
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L580

Mitigation

+ uint32 regenObserve = _config.regenObserve;

- _updateRegenOnObservation(_status.low, currentPrice >= target,
_config.regenObserve);

+ _updateRegenOnObservation(_status.low, currentPrice >= target,
regenObserve);

- _updateRegenOnObservation(_status.high, currentPrice <= target,
_config.regenObserve);

+ _updateRegenOnObservation(_status.high, currentPrice <= target,
regenObserve);

Response

Fixed in PR#199.

Status

Fixed.

3.8 [Gas] Pre-in/decrements cost less gas compared to
post-in/decrements

Context

Operator.sol#L596

Operator.sol#L601

Mitigation

- regen_.count++;
+ ++regen_.count;

14

https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L596
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L601

- regen_.count--;
+ --regen_.count;

Response

Fixed in PR#199.

Status

Fixed.

3.9 [Gas] _regenerate() can be unchecked
Context

Operator.sol#L609-L666

Details

Relevant checks such that the subtractions in the _regenerate() function
will not overflow. Hence, the function can be wrapped in an unchecked
block for greater gas efficiency.

Mitigation

Wrap the function in an unchecked block.

Response

Fixed in PR#199.

15

https://github.com/OlympusDAO/bophades/pull/199/
https://github.com/OlympusDAO/bophades/blob/a95bd5ee0c00f5b45392f1a7600e88a02932a11f/src/policies/Operator.sol##L609-L666
https://github.com/OlympusDAO/bophades/pull/199/

Status

Fixed.

16

4 Disclaimer
The audit report provided reflects a thorough review conducted to the
best of my ability. However, it is important to note that the time-boxing
nature of the review and available resources may prevent the discovery
of all potential security vulnerabilities. As such, this audit does not guarantee
the absence of undiscovered vulnerabilities.

Furthermore, please be aware that the security review was conducted
on a specific commit of the codebase, as indicated. Any subsequent
modifications made to the code will necessitate a new security review
to ensure comprehensive coverage.

Note that the contracts used in production and expected deployment
values may defer significantly from what was reviewed.

To ensure a robust evaluation of the codebase, it is highly recommended
to engage multiple auditors and firms, particularly for large and complex
projects. The involvement ofmultiple perspectives can provide additional
insights and potential missed vulnerabilities.

Please consider these factors whenassessing the audit report andmaking
decisions related to the security and reliability of the smart contracts.
The security review is not an endorsement of the project or its team, and
should not be treated as such.

17

	Introduction
	Audit Scope
	Audit Timeline
	Fix Review
	Auditors Involved

	Risk Assessment Classification
	Findings Summary
	Red [High] Incorrect amount withdrawn from wrappedPayoutToken
	RoyalBlue [Info] Consider ensuring reserve.decimals() is equivalent to wrappedReserve.decimals()
	RoyalBlue [Info] Use IStaking.sol instead of inline interfaces
	DarkOrchid [Gas] Wall and spread checks can be reduced
	DarkOrchid [Gas] Variables can be made immutable
	DarkOrchid [Gas] Equality case can be shifted
	DarkOrchid [Gas] Cache _config.regenObserve
	DarkOrchid [Gas] Pre-in/decrements cost less gas compared to post-in/decrements
	DarkOrchid [Gas] _regenerate() can be unchecked

	Disclaimer

