SHERLOCK SECURITY REVIEW FOR

Prepared for: Olympus

Prepared by: Sherlock

Lead Security Expert: 0x52

Dates Audited: March 20 - March 23, 2023
Prepared on: April 13,2023

https://github.com/IAm0x52

Olympus is building OHM, a community-owned, decentralized and
censorship-resistant reserve currency that is asset-backed, deeply liquid and used
widely across Web3.

sherlock-olympus @ €502fe566516f358141118a40f1c02e014f8b27¢c

» sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol

» sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol

» sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultLido.sol

» sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLi

do.sol

The in-scope contracts depend on these previously audited and external contracts:

. @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/tree/e502fe566516f358141118a40f1c02e014f8b27c
sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLido.sol

Each issue has an assigned severity:

* Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be

fixed.
Medium
3 4
Medium
0 0
0x52 carrot chaduke
cducrest-brainbot hickuphh3
RaymondFam Bahurum

5 @/ SHERLOCK

https://github.com/IAm0x52
https://github.com/cducrest
https://github.com/raymondfam
https://github.com/carrotsmuggler
https://github.com/hickuphh3
https://github.com/bahurum
https://github.com/chaduke3730

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/1

Found by
0x52

Summary

BLVaultLido added a mechanism to siphon off all wstETH obtained from
mismatched pool and oracle prices. This was implemented to fix the problem that
the vault could be manipulated to the attackers gain. This mitigation however does
not fully address the issue and the same issue is still exploitable by sandwiching
oracle update.

Vulnerability Detail
BLVaultLido.sol#L232-L240

uint256 wstethOhmPrice = manager.getTknOhmPrice() ;
uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /
— _OHM_DECIMALS;

// Take any arbs relative to the oracle price for the Treasury and return the
— rest to the owner
uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountOut
? expectedWstethAmountOut
: wstethAmountOut;
if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer (TRSRY(), wstethAmountOut - wstethToReturn);

In the above lines we can see that the current oracle price is used to calculate the
expected amount of wstETH to return to the user. In theory this should prevent the
attack but an attacker can side step this sandwiching the oracle update.

Example:

The POC is very similar to before except now it's composed of two transactions
sandwiching the oracle update. Chainlink oracles have a tolerance threshold of
0.5% before updating so we will use that as our example value. The current price is
assumed to be 0.995 wstETH/OHM. The oracle price (which is about to be
updated) is currently 1:1

3 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/1
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232-L240

Transaction 1:

Balances before attack (0.995:1)
Liquidity: 79.8 OHM 80.2 wstETH
Adversary: 20 wstETH

Swap OHM so that pool price matches pre-update oracle price:
Liquidity: 80 OHM 80 wstETH
Adversary: -0.2 0OHM 20.2 wstETH

Balances after adversary has deposited to the pool:
Liquidity: 100 OHM 100 wstETH
Adversary: -0.2 OHM 0.2 wstETH

Balances after adversary sells wstETH for OHM (0.5% movement in price):
Liquidity: 99.748 OHM 100.252 wstETH
Adversary: 0.052 OHM -0.052 wstETH

Sandwiched Oracle Update:

Oracle updates price of wstETH to 0.995 OHM. Since the attacker already sold

— wstETH to balance

the pool to the post-update price they will be able to withdraw the full amount
— of wstETH.

Transaction 2:

Balances after adversary removes their liquidity:
Liquidity: 79.798 OHM 80.202 wstETH
Adversary: 0.052 OHM 19.998 wstETH

Balances after selling profited OHM:
Liquidity: 79.849 0OHM 80.152 wstETH
Adversary: 20.05 wstETH

As shown above it's still profitable to exploit the vault by sandwiching the oracle
updates. With each oracle update the pool can be repeatedly attacked causing
large losses.

Impact

Vault will be attacked repeatedly for large losses

q @/ SHERLOCK

Code Snippet
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/

src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256

Tool used

\YERTEIRREVIEY

Recommendation

To prevent this | would recommend locking the user into the vault for some
minimum amount of time (i.e. 24 hours)

Discussion
OxLienid

This is kind of similar to #029 in terms of underlying cause (knowledge of oracle
update price)

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/3/files

Discussion
OxLienid

This is kind of similar to #029 in terms of underlying cause (knowledge of oracle
update price)

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/3/files
IAmOx52

Fix looks good. Contract now enforces delay between deposit and withdrawal

5 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/3/files
https://github.com/0xLienid/sherlock-olympus/pull/3/files

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/3

Found by
0x52

Summary

BLVaultLido#withdraw skims off extra stETH from the user that results from oracle
arb. The problem with this is that minTokenAmounts_ no longer provides any
slippage protection because it only ensures that enough is received from the
liquidity pool but never enforces how much is received by the user.

Vulnerability Detail
BLVaultLido.sol#L224-L247

exitBalancerPool (1pAmount, minTokenAmounts_);

// Calculate OHM and wstETH amounts received
uint256 ohmAmountOut = ohm.balanceOf (address(this)) - ohmBefore;
uint256 wstethAmountOut = wsteth.balanceOf (address(this)) - wstethBefore;

// Calculate oracle expected wstETH received amount

// getTknOhmPrice returns the amount of wstETH per 1 OHM based on the oracle
— price

uint256 wstethOhmPrice = manager.getTknOhmPrice() ;

uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /

— _OHM_DECIMALS;

// Take any arbs relative to the oracle price for the Treasury and return the
— rest to the owner
uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountQOut
? expectedWstethAmountOut
: wstethAmountQOut;
if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer (TRSRY(), wstethAmountOut - wstethToReturn);

// Burn OHM
ohm.increaseAllowance (MINTR(), ohmAmountOut) ;
manager . burnOhmFromVault (ohmAmountQOut) ;

5 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/3
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L224-L247

‘// Return wstETH to owner

‘ wsteth.safeTransfer (msg.sender, wstethToReturn);
\ |

minTokenAmounts_ only applies to the removal of liquidity. Since wstETH is
skimmed off to the treasury the user no longer has any way to protect themselves
from slippage. As shown in my other submission, oracle slop can lead to loss of
funds due to this skimming.

Impact

Users cannot protect themselves from oracle slop/wstETH skimming

Code Snippet

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/
src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256

Tool used

Manual Review

Recommendation

Allow the user to specify the amount of wstETH they receive AFTER the arb is
skimmed.

Discussion
OxLienid

This is true, I'm not sure it would matter much in practice since there's no real
economic incentive for anyone but the Treasury to do this. That said, it's a relatively
easy fix so | think it's worth including anyways.

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/11/files

cducrest
Escalate for 10 USDC

Disagree with severity, probably medium or even low. The main reason slippage
protection is needed in exchange is because of sandwich attacks that directly and
instantly impact the price on the pool. Here the issue points to a lack of slippage
protection with regards to the oracle price which cannot be impacted by an
outsider.

. @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/11/files

Since there is slippage protection on the pool withdraw, the vault withdraw tx
cannot be sandwiched for profit (or grief). It is just a nice to have.

sherlock-admin
Escalate for 10 USDC

Disagree with severity, probably medium or even low. The main reason
slippage protection is needed in exchange is because of sandwich
attacks that directly and instantly impact the price on the pool. Here the
issue points to a lack of slippage protection with regards to the oracle
price which cannot be impacted by an outsider.

Since there is slippage protection on the pool withdraw, the vault
withdraw tx cannot be sandwiched for profit (or grief). It is just a nice to
have.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

IAmOx52
Escalate for 10 USDC

Disagree with the above comment. Since skimming of arb happens AFTER pool
slippage checks the user would still lose funds.

sherlock-admin
Escalate for 10 USDC

Disagree with the above comment. Since skimming of arb happens
AFTER pool slippage checks the user would still lose funds.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

cducrest

The user may lose funds, if the arbs relative to the oracle price are to his disfavour.
| agree with that. But whether it is to his disfavour or not cannot be impacted by an
outsider. Additionally, the user can know in advance that he will be subjected to
arbs by checking the oracle/real life asset price. This is not analogous to a dex
swap using a pool of which the state can be influenced by a previous transaction
(front-run / sandwich attack).

8 @/ SHERLOCK

l.e. the reason we protect pool swaps with slippage parameters is not present in
the arb relative to the oracle price.

Discussion
OxLienid

This is true, I'm not sure it would matter much in practice since there's no real
economic incentive for anyone but the Treasury to do this. That said, it's a relatively
easy fix so | think it's worth including anyways.

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/11/files

cducrest
Escalate for 10 USDC

Disagree with severity, probably medium or even low. The main reason slippage
protection is needed in exchange is because of sandwich attacks that directly and
instantly impact the price on the pool. Here the issue points to a lack of slippage
protection with regards to the oracle price which cannot be impacted by an
outsider.

Since there is slippage protection on the pool withdraw, the vault withdraw tx
cannot be sandwiched for profit (or grief). It is just a nice to have.

sherlock-admin
Escalate for 10 USDC

Disagree with severity, probably medium or even low. The main reason
slippage protection is needed in exchange is because of sandwich
attacks that directly and instantly impact the price on the pool. Here the
issue points to a lack of slippage protection with regards to the oracle
price which cannot be impacted by an outsider.

Since there is slippage protection on the pool withdraw, the vault
withdraw tx cannot be sandwiched for profit (or grief). It is just a nice to
have.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

IAmMOx52
Escalate for 10 USDC

9 @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/pull/11/files

Disagree with the above comment. Since skimming of arb happens AFTER pool
slippage checks the user would still lose funds.

sherlock-admin
Escalate for 10 USDC

Disagree with the above comment. Since skimming of arb happens
AFTER pool slippage checks the user would still lose funds.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

cducrest

The user may lose funds, if the arbs relative to the oracle price are to his disfavour.
| agree with that. But whether it is to his disfavour or not cannot be impacted by an
outsider. Additionally, the user can know in advance that he will be subjected to
arbs by checking the oracle/real life asset price. This is not analogous to a dex
swap using a pool of which the state can be influenced by a previous transaction
(front-run / sandwich attack).

l.e. the reason we protect pool swaps with slippage parameters is not present in
the arb relative to the oracle price.

hrishibhat
Escalation accepted

Considering this issue as a valid high Accepting the 2nd escalation. After further
internal discussion considering the issue as is because there can loss due to a
mismatch in oracle and pool price, there should be slippage protections on the final
amount to protect the user.

sherlock-admin
Escalation accepted

Considering this issue as a valid high Accepting the 2nd escalation. After
further internal discussion considering the issue as is because there can
loss due to a mismatch in oracle and pool price, there should be slippage
protections on the final amount to protect the user.

This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

IAmMOx52

10 @/ SHERLOCK

Fix looks good. Added a secondary input to allow user to specify minimum wstETH

T @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/4

Found by

0x52, carrot, cducrest-brainbot, hickuphh3, Bahurum

Summary

The AuraRewardPool allows users to stake directly for other users. In this case the
malicious user could stake LP directly for their vault then call withdraw on their
vault. This would cause the LP tracking to break on BLVaultManagerLido. The result
is that some users would now be permanently trapped because their vault would
revert when trying to withdraw.

Vulnerability Detail
BaseRewardPool.sol#L196-L207

function stakeFor(address _for, uint256 _amount)
public
returns(bool)

{
_processStake(_amount, _for);
//take away from sender
stakingToken.safeTransferFrom(msg.sender, address(this), _amount);
emit Staked(_for, _amount);
return true;
}

AuraRewardPool allows users to stake directly for another address with them
receiving the staked tokens.

BLVaultLido.sol#L218-L224

manager .decreaseTotalLp(1lpAmount_) ;

// Unstake from Aura
auraRewardPool () .withdrawAndUnwrap (1pAmount_, claim_);

7 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/4
https://github.com/aurafinance/convex-platform/blob/1d6e9c403a4440c712396422e1bd5af7e5ea1ecf/contracts/contracts/BaseRewardPool.sol#L196-L207
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L218-L224

// Exit Balancer pool
exitBalancerPool (1pAmount, minTokenAmounts_);

Once the LP has been stake the adversary can immediately withdraw it from their
vault. This calls decreaseTotalLP on BLVaultManagerLido which now permanently
break the LP account.

BLVaultManagerLido.sol#L277-L280

function decreaseTotallp(uint256 amount_) external override onlyWhileActive
— onlyVault {

if (amount_ > totallp) revert BLManagerLido_InvalidLpAmount () ;

totallp -= amount_;

If the amount_ is ever greater than totalLP it will cause decreaseTotalLP to revert.
By withdrawing LP that was never deposited to a vault, it permanently breaks other
users from being able to withdraw.

Example: User A deposits wstETH to their vault which yields 50 LP. User B creates
a vault then stake 50 LP and withdraws it from his vault. The manager now thinks

there is O LP in vaults. When User A tries to withdraw their LP it will revert when it
calls manger.decreaseTotalLp. User A is now permanently trapped in the vault.

Impact

LP accounting is broken and users are permanently trapped.

Code Snippet
BLVaultLido.sol#L203-L256

Tool used

Manual Review

Recommendation

Individual vaults should track how much they have deposited and shouldn't be
allowed to withdraw more than deposited.
Discussion

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/5/files

13 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L277-L280
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/5/files

Discussion

OxLienid

Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/5/files
IAmOx52

Fix looks good. Optionally IpBalance could be removed

. @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/pull/5/files

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/5

Found by
0x52

Summary

All chainlink oracles have a deviation threshold between the current price of the
asset and the on-chain price for that asset. The more oracles used for determining
the price the larger the total discrepancy can be. These can be combined and
exploited to mint more OHM than expected and profit.

Vulnerability Detail
BLVaultLido.sol#L156-L171

uint256 ohmWstethPrice = manager.getOhmTknPrice();
uint256 ohmMintAmount = (amount_ * ohmWstethPrice) / _WSTETH_DECIMALS;

// Block scope to avoid stack too deep

{
// Cache OHM-wstETH BPT before
uint256 bptBefore = liquidityPool.balanceOf (address(this));

// Transfer in wstETH
wsteth.safeTransferFrom(msg.sender, address(this), amount_);

// Mint OHM
manager .mintOhmToVault (ohmMintAmount) ;

// Join Balancer pool
joinBalancerPool (ohmMintAmount, amount, minLpAmount_);

The amount of OHM to mint and deposit is determined by the calculated price from
the on-chain oracle prices.

BLVaultLido.sol#L355-L364

1uint256 [] memory maxAmountsIn = new uint256[](2);
maxAmountsIn[0] = ohmAmount_;

15 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/5
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L156-L171
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L355-L364

maxAmountsIn[1] = wstethAmount_;

JoinPoolRequest memory joinPoolRequest = JoinPoolRequest ({
assets: assets,
maxAmountsIn: maxAmountsIn,
userData: abi.encode(l, maxAmountsIn, minLpAmount_),
fromInternalBalance: false

3

To make the issue worse, _joinBalancerPool use 1 for the join type. This is the
EXACT_TOKENS_IN_FOR_BPT_OUT method of joining. What this means is that the
join will guaranteed use all input tokens. If the current pool isn't balanced in the
same way then the join request will effectively swap one token so that the input
tokens match the current pool. Now if the ratio is off then too much OHM will be
minted and will effectively traded for wstETH. This allows the user to withdraw at a
profit once the oracle has been updated the discrepancy is gone.

Impact

Users can always time oracles so that they enter at an advantageous price and the
deficit is paid by Olympus with minted OHM

Code Snippet

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/
src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370

Tool used

\YEREIRREVIE

Recommendation

The vault needs to have withdraw and/or deposit fees to make attacks like this
unprofitable.

Discussion
OxLienid

Similar underlying issues to #027 and #051. Solving one should solve all of them.
OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/8/files

16 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370
https://github.com/0xLienid/sherlock-olympus/pull/8/files

Discussion

OxLienid

Similar underlying issues to #027 and #051. Solving one should solve all of them.
OxLienid

Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/8/files
IAmOx52

Fix looks good. Contract now uses the lesser of pool and oracle price to determine
how much OHM to mint

- @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/pull/8/files

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/2

Found by
0x52

Summary

getTknOhmPrice uses the stETH/ETH chainlink oracle to calculate the current price
of the OHM token. This token valuation is used to determine the amount of stETH
to skim from the user resulting from oracle arb. This is problematic since
stETH/ETH has a 24 hour heartbeat and a 2% deviation threshold. This deviation in
price could easily cause loss of funds to the user.

Vulnerability Detail
BLVaultManagerLido.sol#L458-L473

function getTknOhmPrice() public view override returns (uint256) {
// Get stETH per wstETH (18 Decimals)
uint256 stethPerWsteth = IWsteth(pairToken) .stEthPerToken() ;

// Get ETH per OHM (18 Decimals)
uint256 ethPerOhm = _validatePrice(ohmEthPriceFeed.feed,
— ohmEthPriceFeed.updateThreshold) ;

// Get stETH per ETH (18 Decimals)
uint256 stethPerEth = _validatePrice(
stethEthPriceFeed.feed,
stethEthPriceFeed.updateThreshold
)5

// Calculate wstETH per OHM (18 decimals)
return (ethPerOhm * 1e36) / (stethPerWsteth * stethPerEth);

getTknOhmPrice uses the stETH/ETH oracle to determine the price which as stated
above has a 24 hour hearbeat and 2% deviation threshold, this means that the
price can move up to 2% or 24 hours before a price update is triggered. The result
is that the on-chain price could be much different than the true stETH price.

18 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/2
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473

BLVaultLido.sol#L232-1L.240

uint256 wstethOhmPrice = manager.getTknOhmPrice();
uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /
— _OHM_DECIMALS;

// Take any arbs relative to the oracle price for the Treasury and return the
— rest to the owner
uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountOut
? expectedWstethAmountQOut
: wstethAmountOut;
if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer (TRSRY(), wstethAmountOut - wstethToReturn);

This price is used when determining how much stETH to send back to the user.
Since the oracle can be up to 2% different from the true price, the user can unfairly
lose part of their funds.

Impact

User will be unfairly penalized due large variance between on-chain price and asset
price

Code Snippet

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/
src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/
src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473

Tool used

Manual Review

Recommendation

Use the stETH/USD oracle instead because it has a 1-hour heartbeat and a 1%
deviation threshold.

Discussion

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/6/files

cducrest

19 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232-L240
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473
https://github.com/0xLienid/sherlock-olympus/pull/6/files

Escalate for 10 USDC

Disagree with severity, probably medium or low. The sherlock docs for high severity
states: "The vulnerability must be something that is not considered an acceptable
risk by a reasonable protocol team." The provided fix arguably lowers the risk by 2:
we go from 2% deviation threshold to 1% by changing oracle.

If having 2% deviation is unacceptable, | don't see how having 1% is acceptable.

Additionally, the user is able to notice when the price oracle deviate from the real
value of the asset, and this value cannot be influenced by an attacker.

sherlock-admin
Escalate for 10 USDC

Disagree with severity, probably medium or low. The sherlock docs for
high severity states: "The vulnerability must be something that is not
considered an acceptable risk by a reasonable protocol team." The
provided fix arguably lowers the risk by 2: we go from 2% deviation
threshold to 1% by changing oracle.

If having 2% deviation is unacceptable, | don't see how having 1% is
acceptable.

Additionally, the user is able to notice when the price oracle deviate from
the real value of the asset, and this value cannot be influenced by an
attacker.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

IAmOx52
Escalate for 10 USDC

Disagree with the comment above. Sponsor has clearly accepted issue and has not
disagreed with severity, which indicates they do not consider it an acceptable risk

sherlock-admin
Escalate for 10 USDC

Disagree with the comment above. Sponsor has clearly accepted issue
and has not disagreed with severity, which indicates they do not
consider it an acceptable risk

You've created a valid escalation for 10 USDC!

To remove the escalation from consideration: Delete your comment.

20 @/ SHERLOCK

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

hrishibhat
Escalation accepted

Accepting the first escalation as the severity of this impact can be considered
medium based on the escalation

sherlock-admin
Escalation accepted

Accepting the first escalation as the severity of this impact can be
considered medium based on the escalation

This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

Discussion

OxLienid
Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/6/files

cducrest
Escalate for 10 USDC

Disagree with severity, probably medium or low. The sherlock docs for high severity
states: "The vulnerability must be something that is not considered an acceptable
risk by a reasonable protocol team." The provided fix arguably lowers the risk by 2:
we go from 2% deviation threshold to 1% by changing oracle.

If having 2% deviation is unacceptable, | don't see how having 1% is acceptable.

Additionally, the user is able to notice when the price oracle deviate from the real
value of the asset, and this value cannot be influenced by an attacker.

sherlock-admin
Escalate for 10 USDC

Disagree with severity, probably medium or low. The sherlock docs for
high severity states: "The vulnerability must be something that is not
considered an acceptable risk by a reasonable protocol team." The
provided fix arguably lowers the risk by 2: we go from 2% deviation
threshold to 1% by changing oracle.

If having 2% deviation is unacceptable, | don't see how having 1% is
acceptable.

o @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/pull/6/files

Additionally, the user is able to notice when the price oracle deviate from
the real value of the asset, and this value cannot be influenced by an
attacker.

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

IAmOx52
Escalate for 10 USDC

Disagree with the comment above. Sponsor has clearly accepted issue and has not
disagreed with severity, which indicates they do not consider it an acceptable risk

sherlock-admin
Escalate for 10 USDC

Disagree with the comment above. Sponsor has clearly accepted issue
and has not disagreed with severity, which indicates they do not
consider it an acceptable risk

You've created a valid escalation for 10 USDC!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

hrishibhat
Escalation accepted

Accepting the first escalation as the severity of this impact can be considered
medium based on the escalation

sherlock-admin
Escalation accepted

Accepting the first escalation as the severity of this impact can be
considered medium based on the escalation

This issue's escalations have been accepted!

Contestants' payouts and scores will be updated according to the changes made
on this issue.

IAMmOx52

Fix looks good. Now uses steth/usd and eth/usd oracles in place of steth/eth
oracles to reduce delay and deviation

o5 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/28

Found by

RaymondFam

Summary

The contract check on the withdrawn ratios of OHM and wstETH against the
current oracle price could run into grieving naive users by taking any wstETH
shifted imbalance as a fee to the treasury even though these users have not gamed
the system.

Vulnerability Detail

Here is a typical scenario, assuming the pool has been initiated with total LP equal
to sqrt(100_000 * 1_000) = 10_000. (Note: OHM: $15, wstETH: $1500 with the pool
pricing match up with manager.getOhmTknPrice() or manager.getTknOhmPrice(),
i.e. 100 OHM to 1 wstETH or 0.01 wstETH to 1 OHM. The pool token balances in
each step below may be calculated via the Constant Product Simulation after each
swap and stake.)

OHM token balance: 100_000
wstETH token balance: 1_000
Total LP: 10_000

1. A series of swap activities results in the pool shifted more of the LP into
WStETH.

OHM token balance: 90_909.1 wstETH token balance: 1_100 Total LP: 10_000

2. Bob calls deposit() by providing 11 wstETH where 1100 OHM is minted with
1100 - 90909.1 * 0.01 = 190.91 unused OHM burned. (Note: Bob successfully
stakes with 909.09 OHM and 11 wstETH and proportionately receives 100 LP.)

OHM token balance: 91_818.19 wstETH token balance: 1_111 Total LP: 10_100
User's LP: 100

3. Bob changes his mind instantly and proceeds to call withdraw() to remove all
of his LP. He receives the originally staked 909.09 OHM and 11 wstETH. All
OHM is burned but he is only entitled to receive 909.09 / 100 = 9.09 wstETH
since the system takes any arbs relative to the oracle price for the Treasury
and returns the rest to the owner.

23 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/28
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L156
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232
https://amm-calculator.vercel.app/
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L143
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L187-L190
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L236-L240
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L247

OHM token balance: 90_909.1 wstETH token balance: 1_100 Total LP: 10_000
User's LP: O

Impact

Bob suffers a loss of 11 - 9.09 = 1.91 wstETH (~ 17.36% loss), and the system is
ready to trap the next user given the currently imbalanced pool still shifted more of
the LP into wstETH.

Code Snippet
File: BLVaultLido.sol#L143-L200

File: BLVaultLido.sol#L203-L256

Tool used

Manual Review

Recommendation

Consider implementing a snapshot of the entry record of OHM and wstETH and
compare that with the proportionate exit record. Slash only the differential for
treasury solely on dissuading large attempts to shift the pool around, and in this
case it should be 0 wstETH since the originally staked wstETH is no greater than
expectedWstethAmountOut.

Discussion
OxLienid

True, but this will be very very minor in practice. It relies on assuming no arbitrage
is ever taken, it will also be helped (but not eliminated) by the solution to #003

Discussion
OxLienid

True, but this will be very very minor in practice. It relies on assuming no arbitrage
is ever taken, it will also be helped (but not eliminated) by the solution to #003

IAMOx52

Sponsor has acknowledged and accepted this risk

o @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L143-L200
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256

Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/48

Found by

chaduke, cducrest-brainbot

Summary

The function setLimit () may not be able to sufficiently restrict mint ability of
manager.

Vulnerability Detail

The setLimit () function reverts when newLimit_ < deployedOhm, mintOhmToVault
will revert if deployedOhm + amount_ > ohmLimit + circulatingOhmBurned. If the
value of circulatingOhmBurned is high, and the admin can only set the limit above
deployedOhm, they could end up in a state where they cannot limit the amount the
vault is allowed to burn sufficiently. l.e. the vault is always able to mint at least
circulatingOhmBurned new tokens.

Note that circulatingOhmBurned is never lowered (even when minting new tokens),
so this value could grow arbitrarily high.

Impact

Lack of control of admin on mint ability of manager.

Code Snippet

SetLimit function:
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/

src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483

Tool used

Manual Review

Recommendation

Use similar restrictions as in mint0hmToVault () for setLimit or lower
circulatingOhmBurned when minting new OHM.

95 @/ SHERLOCK

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/48
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483

Discussion

OxLienid

Same issue as #018

OxLienid

Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/2/files

Discussion

OxLienid

Same issue as #018

OxLienid

Fix Implementation: https://github.com/OxLienid/sherlock-olympus/pull/2/files
IAmOx52

Fix looks good. setLimit now properly accounts for circulatingOhmBurned

26 @/ SHERLOCK

https://github.com/0xLienid/sherlock-olympus/pull/2/files
https://github.com/0xLienid/sherlock-olympus/pull/2/files

