
SHERLOCK SECURITY REVIEW FOR

Prepared for: OlympusPrepared by: SherlockLead Security Expert: 0x52Dates Audited: March 20 - March 23, 2023Prepared on: April 13, 2023

https://github.com/IAm0x52

Introduction
Olympus is building OHM, a community-owned, decentralized andcensorship-resistant reserve currency that is asset-backed, deeply liquid and usedwidely across Web3.
Scopesherlock-olympus @ e502fe566516f358141118a40f1c02e014f8b27c• sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol• sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol• sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultLido.sol• sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLido.solThe in-scope contracts depend on these previously audited and external contracts:

1

https://github.com/0xLienid/sherlock-olympus/tree/e502fe566516f358141118a40f1c02e014f8b27c
sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLido.sol
sherlock-olympus/src/policies/BoostedLiquidity/interfaces/IBLVaultManagerLido.sol

FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High3 4
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues
0x52cducrest-brainbotRaymondFam

carrothickuphh3Bahurum
chaduke

2

https://github.com/IAm0x52
https://github.com/cducrest
https://github.com/raymondfam
https://github.com/carrotsmuggler
https://github.com/hickuphh3
https://github.com/bahurum
https://github.com/chaduke3730

IssueH-1: Adversary cansandwichoracleupdates toex-ploit vault
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/1
Found by0x52
SummaryBLVaultLido added a mechanism to siphon off all wstETH obtained frommismatched pool and oracle prices. This was implemented to fix the problem thatthe vault could be manipulated to the attackers gain. This mitigation however doesnot fully address the issue and the same issue is still exploitable by sandwichingoracle update.
Vulnerability DetailBLVaultLido.sol#L232-L240
uint256 wstethOhmPrice = manager.getTknOhmPrice();
uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /

_OHM_DECIMALS;,!

// Take any arbs relative to the oracle price for the Treasury and return the
rest to the owner,!

uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountOut
? expectedWstethAmountOut
: wstethAmountOut;

if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer(TRSRY(), wstethAmountOut - wstethToReturn);

In the above lines we can see that the current oracle price is used to calculate theexpected amount of wstETH to return to the user. In theory this should prevent theattack but an attacker can side step this sandwiching the oracle update.Example:The POC is very similar to before except now it's composed of two transactionssandwiching the oracle update. Chainlink oracles have a tolerance threshold of0.5% before updating so we will use that as our example value. The current price isassumed to be 0.995 wstETH/OHM. The oracle price (which is about to beupdated) is currently 1:1

3

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/1
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232-L240

Transaction 1:

Balances before attack (0.995:1)
Liquidity: 79.8 OHM 80.2 wstETH
Adversary: 20 wstETH

Swap OHM so that pool price matches pre-update oracle price:
Liquidity: 80 OHM 80 wstETH
Adversary: -0.2 OHM 20.2 wstETH

Balances after adversary has deposited to the pool:
Liquidity: 100 OHM 100 wstETH
Adversary: -0.2 OHM 0.2 wstETH

Balances after adversary sells wstETH for OHM (0.5% movement in price):
Liquidity: 99.748 OHM 100.252 wstETH
Adversary: 0.052 OHM -0.052 wstETH

Sandwiched Oracle Update:

Oracle updates price of wstETH to 0.995 OHM. Since the attacker already sold
wstETH to balance,!

the pool to the post-update price they will be able to withdraw the full amount
of wstETH.,!

Transaction 2:

Balances after adversary removes their liquidity:
Liquidity: 79.798 OHM 80.202 wstETH
Adversary: 0.052 OHM 19.998 wstETH

Balances after selling profited OHM:
Liquidity: 79.849 OHM 80.152 wstETH
Adversary: 20.05 wstETH

As shown above it's still profitable to exploit the vault by sandwiching the oracleupdates. With each oracle update the pool can be repeatedly attacked causinglarge losses.
ImpactVault will be attacked repeatedly for large losses

4

Code Snippethttps://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
Tool usedManual Review
RecommendationTo prevent this I would recommend locking the user into the vault for someminimum amount of time (i.e. 24 hours)
Discussion0xLienidThis is kind of similar to #029 in terms of underlying cause (knowledge of oracleupdate price)0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/3/files
Discussion0xLienidThis is kind of similar to #029 in terms of underlying cause (knowledge of oracleupdate price)0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/3/filesIAm0x52Fix looks good. Contract now enforces delay between deposit and withdrawal

5

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/3/files
https://github.com/0xLienid/sherlock-olympus/pull/3/files

Issue H-2: minTokenAmounts_ is useless in new config-uration and doesn't provide any real slippage protection
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/3
Found by0x52
SummaryBLVaultLido#withdraw skims off extra stETH from the user that results from oraclearb. The problem with this is that minTokenAmounts_ no longer provides anyslippage protection because it only ensures that enough is received from theliquidity pool but never enforces how much is received by the user.
Vulnerability DetailBLVaultLido.sol#L224-L247
exitBalancerPool(lpAmount, minTokenAmounts_);

// Calculate OHM and wstETH amounts received
uint256 ohmAmountOut = ohm.balanceOf(address(this)) - ohmBefore;
uint256 wstethAmountOut = wsteth.balanceOf(address(this)) - wstethBefore;

// Calculate oracle expected wstETH received amount
// getTknOhmPrice returns the amount of wstETH per 1 OHM based on the oracle

price,!

uint256 wstethOhmPrice = manager.getTknOhmPrice();
uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /

_OHM_DECIMALS;,!

// Take any arbs relative to the oracle price for the Treasury and return the
rest to the owner,!

uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountOut
? expectedWstethAmountOut
: wstethAmountOut;

if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer(TRSRY(), wstethAmountOut - wstethToReturn);

// Burn OHM
ohm.increaseAllowance(MINTR(), ohmAmountOut);
manager.burnOhmFromVault(ohmAmountOut);

6

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/3
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L224-L247

// Return wstETH to owner
wsteth.safeTransfer(msg.sender, wstethToReturn);

minTokenAmounts_ only applies to the removal of liquidity. Since wstETH isskimmed off to the treasury the user no longer has any way to protect themselvesfrom slippage. As shown in my other submission, oracle slop can lead to loss offunds due to this skimming.
ImpactUsers cannot protect themselves from oracle slop/wstETH skimming
Code Snippethttps://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
Tool usedManual Review
RecommendationAllow the user to specify the amount of wstETH they receive AFTER the arb isskimmed.
Discussion0xLienidThis is true, I'm not sure it would matter much in practice since there's no realeconomic incentive for anyone but the Treasury to do this. That said, it's a relativelyeasy fix so I think it's worth including anyways.0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/11/filescducrestEscalate for 10 USDCDisagree with severity, probably medium or even low. The main reason slippageprotection is needed in exchange is because of sandwich attacks that directly andinstantly impact the price on the pool. Here the issue points to a lack of slippageprotection with regards to the oracle price which cannot be impacted by anoutsider.

7

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/11/files

Since there is slippage protection on the pool withdraw, the vault withdraw txcannot be sandwiched for profit (or grief). It is just a nice to have.sherlock-adminEscalate for 10 USDCDisagree with severity, probably medium or even low. The main reasonslippage protection is needed in exchange is because of sandwichattacks that directly and instantly impact the price on the pool. Here theissue points to a lack of slippage protection with regards to the oracleprice which cannot be impacted by an outsider.Since there is slippage protection on the pool withdraw, the vaultwithdraw tx cannot be sandwiched for profit (or grief). It is just a nice tohave.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.IAm0x52Escalate for 10 USDCDisagree with the above comment. Since skimming of arb happens AFTER poolslippage checks the user would still lose funds.sherlock-adminEscalate for 10 USDCDisagree with the above comment. Since skimming of arb happensAFTER pool slippage checks the user would still lose funds.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.cducrestThe user may lose funds, if the arbs relative to the oracle price are to his disfavour.I agree with that. But whether it is to his disfavour or not cannot be impacted by anoutsider. Additionally, the user can know in advance that he will be subjected toarbs by checking the oracle/real life asset price. This is not analogous to a dexswap using a pool of which the state can be influenced by a previous transaction(front-run / sandwich attack).
8

I.e. the reason we protect pool swaps with slippage parameters is not present inthe arb relative to the oracle price.
Discussion0xLienidThis is true, I'm not sure it would matter much in practice since there's no realeconomic incentive for anyone but the Treasury to do this. That said, it's a relativelyeasy fix so I think it's worth including anyways.0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/11/filescducrestEscalate for 10 USDCDisagree with severity, probably medium or even low. The main reason slippageprotection is needed in exchange is because of sandwich attacks that directly andinstantly impact the price on the pool. Here the issue points to a lack of slippageprotection with regards to the oracle price which cannot be impacted by anoutsider.Since there is slippage protection on the pool withdraw, the vault withdraw txcannot be sandwiched for profit (or grief). It is just a nice to have.sherlock-adminEscalate for 10 USDCDisagree with severity, probably medium or even low. The main reasonslippage protection is needed in exchange is because of sandwichattacks that directly and instantly impact the price on the pool. Here theissue points to a lack of slippage protection with regards to the oracleprice which cannot be impacted by an outsider.Since there is slippage protection on the pool withdraw, the vaultwithdraw tx cannot be sandwiched for profit (or grief). It is just a nice tohave.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.IAm0x52Escalate for 10 USDC

9

https://github.com/0xLienid/sherlock-olympus/pull/11/files

Disagree with the above comment. Since skimming of arb happens AFTER poolslippage checks the user would still lose funds.sherlock-adminEscalate for 10 USDCDisagree with the above comment. Since skimming of arb happensAFTER pool slippage checks the user would still lose funds.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.cducrestThe user may lose funds, if the arbs relative to the oracle price are to his disfavour.I agree with that. But whether it is to his disfavour or not cannot be impacted by anoutsider. Additionally, the user can know in advance that he will be subjected toarbs by checking the oracle/real life asset price. This is not analogous to a dexswap using a pool of which the state can be influenced by a previous transaction(front-run / sandwich attack).I.e. the reason we protect pool swaps with slippage parameters is not present inthe arb relative to the oracle price.hrishibhatEscalation acceptedConsidering this issue as a valid high Accepting the 2nd escalation. After furtherinternal discussion considering the issue as is because there can loss due to amismatch in oracle and pool price, there should be slippage protections on the finalamount to protect the user.sherlock-adminEscalation acceptedConsidering this issue as a valid high Accepting the 2nd escalation. Afterfurther internal discussion considering the issue as is because there canloss due to a mismatch in oracle and pool price, there should be slippageprotections on the final amount to protect the user.This issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.IAm0x52
10

Fix looks good. Added a secondary input to allow user to specify minimum wstETH

11

Issue H-3: Adversary can stake LP directly for the vaultthenwithdrawtobreak lpaccounting inBLVaultManager-Lido
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/4
Found by0x52, carrot, cducrest-brainbot, hickuphh3, Bahurum
SummaryThe AuraRewardPool allows users to stake directly for other users. In this case themalicious user could stake LP directly for their vault then call withdraw on theirvault. This would cause the LP tracking to break on BLVaultManagerLido. The resultis that some users would now be permanently trapped because their vault wouldrevert when trying to withdraw.
Vulnerability DetailBaseRewardPool.sol#L196-L207
function stakeFor(address _for, uint256 _amount)

public
returns(bool)

{
_processStake(_amount, _for);

//take away from sender
stakingToken.safeTransferFrom(msg.sender, address(this), _amount);
emit Staked(_for, _amount);

return true;
}

AuraRewardPool allows users to stake directly for another address with themreceiving the staked tokens.BLVaultLido.sol#L218-L224
manager.decreaseTotalLp(lpAmount_);

// Unstake from Aura
auraRewardPool().withdrawAndUnwrap(lpAmount_, claim_);

12

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/4
https://github.com/aurafinance/convex-platform/blob/1d6e9c403a4440c712396422e1bd5af7e5ea1ecf/contracts/contracts/BaseRewardPool.sol#L196-L207
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L218-L224

// Exit Balancer pool
exitBalancerPool(lpAmount, minTokenAmounts_);

Once the LP has been stake the adversary can immediately withdraw it from theirvault. This calls decreaseTotalLP on BLVaultManagerLido which now permanentlybreak the LP account.BLVaultManagerLido.sol#L277-L280
function decreaseTotalLp(uint256 amount_) external override onlyWhileActive

onlyVault {,!

if (amount_ > totalLp) revert BLManagerLido_InvalidLpAmount();
totalLp -= amount_;

}

If the amount_ is ever greater than totalLP it will cause decreaseTotalLP to revert.By withdrawing LP that was never deposited to a vault, it permanently breaks otherusers from being able to withdraw.Example: User A deposits wstETH to their vault which yields 50 LP. User B createsa vault then stake 50 LP and withdraws it from his vault. The manager now thinksthere is 0 LP in vaults. When User A tries to withdraw their LP it will revert when itcalls manger.decreaseTotalLp. User A is now permanently trapped in the vault.
ImpactLP accounting is broken and users are permanently trapped.
Code SnippetBLVaultLido.sol#L203-L256
Tool usedManual Review
RecommendationIndividual vaults should track how much they have deposited and shouldn't beallowed to withdraw more than deposited.
Discussion0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/5/files

13

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L277-L280
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256
https://github.com/0xLienid/sherlock-olympus/pull/5/files

Discussion0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/5/filesIAm0x52Fix looks good. Optionally lpBalance could be removed

14

https://github.com/0xLienid/sherlock-olympus/pull/5/files

Issue H-4: Users can abuse discrepancies between ora-cle and true asset price to mint more OHM than neededand profit from it
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/5
Found by0x52
SummaryAll chainlink oracles have a deviation threshold between the current price of theasset and the on-chain price for that asset. The more oracles used for determiningthe price the larger the total discrepancy can be. These can be combined andexploited to mint more OHM than expected and profit.
Vulnerability DetailBLVaultLido.sol#L156-L171
uint256 ohmWstethPrice = manager.getOhmTknPrice();
uint256 ohmMintAmount = (amount_ * ohmWstethPrice) / _WSTETH_DECIMALS;

// Block scope to avoid stack too deep
{

// Cache OHM-wstETH BPT before
uint256 bptBefore = liquidityPool.balanceOf(address(this));

// Transfer in wstETH
wsteth.safeTransferFrom(msg.sender, address(this), amount_);

// Mint OHM
manager.mintOhmToVault(ohmMintAmount);

// Join Balancer pool
joinBalancerPool(ohmMintAmount, amount, minLpAmount_);

The amount of OHM to mint and deposit is determined by the calculated price fromthe on-chain oracle prices.BLVaultLido.sol#L355-L364
uint256[] memory maxAmountsIn = new uint256[](2);
maxAmountsIn[0] = ohmAmount_;

15

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/5
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L156-L171
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L355-L364

maxAmountsIn[1] = wstethAmount_;

JoinPoolRequest memory joinPoolRequest = JoinPoolRequest({
assets: assets,
maxAmountsIn: maxAmountsIn,
userData: abi.encode(1, maxAmountsIn, minLpAmount_),
fromInternalBalance: false

});

To make the issue worse, _joinBalancerPool use 1 for the join type. This is theEXACT_TOKENS_IN_FOR_BPT_OUT method of joining. What this means is that thejoin will guaranteed use all input tokens. If the current pool isn't balanced in thesame way then the join request will effectively swap one token so that the inputtokens match the current pool. Now if the ratio is off then too much OHM will beminted and will effectively traded for wstETH. This allows the user to withdraw at aprofit once the oracle has been updated the discrepancy is gone.
ImpactUsers can always time oracles so that they enter at an advantageous price and thedeficit is paid by Olympus with minted OHM
Code Snippethttps://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370
Tool usedManual Review
RecommendationThe vault needs to have withdraw and/or deposit fees to make attacks like thisunprofitable.
Discussion0xLienidSimilar underlying issues to #027 and #051. Solving one should solve all of them.0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/8/files

16

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L340-L370
https://github.com/0xLienid/sherlock-olympus/pull/8/files

Discussion0xLienidSimilar underlying issues to #027 and #051. Solving one should solve all of them.0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/8/filesIAm0x52Fix looks good. Contract now uses the lesser of pool and oracle price to determinehow much OHM to mint

17

https://github.com/0xLienid/sherlock-olympus/pull/8/files

Issue M-1: stETH/ETH chainlink oracle has too long ofheartbeat and deviation threshold which can cause lossof funds
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/2
Found by0x52
SummarygetTknOhmPrice uses the stETH/ETH chainlink oracle to calculate the current priceof the OHM token. This token valuation is used to determine the amount of stETHto skim from the user resulting from oracle arb. This is problematic sincestETH/ETH has a 24 hour heartbeat and a 2% deviation threshold. This deviation inprice could easily cause loss of funds to the user.
Vulnerability DetailBLVaultManagerLido.sol#L458-L473
function getTknOhmPrice() public view override returns (uint256) {

// Get stETH per wstETH (18 Decimals)
uint256 stethPerWsteth = IWsteth(pairToken).stEthPerToken();

// Get ETH per OHM (18 Decimals)
uint256 ethPerOhm = _validatePrice(ohmEthPriceFeed.feed,

ohmEthPriceFeed.updateThreshold);,!

// Get stETH per ETH (18 Decimals)
uint256 stethPerEth = _validatePrice(

stethEthPriceFeed.feed,
stethEthPriceFeed.updateThreshold

);

// Calculate wstETH per OHM (18 decimals)
return (ethPerOhm * 1e36) / (stethPerWsteth * stethPerEth);

}

getTknOhmPrice uses the stETH/ETH oracle to determine the price which as statedabove has a 24 hour hearbeat and 2% deviation threshold, this means that theprice can move up to 2% or 24 hours before a price update is triggered. The resultis that the on-chain price could be much different than the true stETH price.
18

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/2
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473

BLVaultLido.sol#L232-L240
uint256 wstethOhmPrice = manager.getTknOhmPrice();
uint256 expectedWstethAmountOut = (ohmAmountOut * wstethOhmPrice) /

_OHM_DECIMALS;,!

// Take any arbs relative to the oracle price for the Treasury and return the
rest to the owner,!

uint256 wstethToReturn = wstethAmountOut > expectedWstethAmountOut
? expectedWstethAmountOut
: wstethAmountOut;

if (wstethAmountOut > wstethToReturn)
wsteth.safeTransfer(TRSRY(), wstethAmountOut - wstethToReturn);

This price is used when determining how much stETH to send back to the user.Since the oracle can be up to 2% different from the true price, the user can unfairlylose part of their funds.
ImpactUser will be unfairly penalized due large variance between on-chain price and assetprice
Code Snippethttps://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473
Tool usedManual Review
RecommendationUse the stETH/USD oracle instead because it has a 1-hour heartbeat and a 1%deviation threshold.
Discussion0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/6/filescducrest

19

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232-L240
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L440-L455
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L458-L473
https://github.com/0xLienid/sherlock-olympus/pull/6/files

Escalate for 10 USDCDisagree with severity, probably medium or low. The sherlock docs for high severitystates: "The vulnerability must be something that is not considered an acceptablerisk by a reasonable protocol team." The provided fix arguably lowers the risk by 2:we go from 2% deviation threshold to 1% by changing oracle.If having 2% deviation is unacceptable, I don't see how having 1% is acceptable.Additionally, the user is able to notice when the price oracle deviate from the realvalue of the asset, and this value cannot be influenced by an attacker.sherlock-adminEscalate for 10 USDCDisagree with severity, probably medium or low. The sherlock docs forhigh severity states: "The vulnerability must be something that is notconsidered an acceptable risk by a reasonable protocol team." Theprovided fix arguably lowers the risk by 2: we go from 2% deviationthreshold to 1% by changing oracle.If having 2% deviation is unacceptable, I don't see how having 1% isacceptable.Additionally, the user is able to notice when the price oracle deviate fromthe real value of the asset, and this value cannot be influenced by anattacker.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.IAm0x52Escalate for 10 USDCDisagree with the comment above. Sponsor has clearly accepted issue and has notdisagreed with severity, which indicates they do not consider it an acceptable risksherlock-adminEscalate for 10 USDCDisagree with the comment above. Sponsor has clearly accepted issueand has not disagreed with severity, which indicates they do notconsider it an acceptable riskYou've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.
20

You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.hrishibhatEscalation acceptedAccepting the first escalation as the severity of this impact can be consideredmedium based on the escalationsherlock-adminEscalation acceptedAccepting the first escalation as the severity of this impact can beconsidered medium based on the escalationThis issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.
Discussion0xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/6/filescducrestEscalate for 10 USDCDisagree with severity, probably medium or low. The sherlock docs for high severitystates: "The vulnerability must be something that is not considered an acceptablerisk by a reasonable protocol team." The provided fix arguably lowers the risk by 2:we go from 2% deviation threshold to 1% by changing oracle.If having 2% deviation is unacceptable, I don't see how having 1% is acceptable.Additionally, the user is able to notice when the price oracle deviate from the realvalue of the asset, and this value cannot be influenced by an attacker.sherlock-adminEscalate for 10 USDCDisagree with severity, probably medium or low. The sherlock docs forhigh severity states: "The vulnerability must be something that is notconsidered an acceptable risk by a reasonable protocol team." Theprovided fix arguably lowers the risk by 2: we go from 2% deviationthreshold to 1% by changing oracle.If having 2% deviation is unacceptable, I don't see how having 1% isacceptable.

21

https://github.com/0xLienid/sherlock-olympus/pull/6/files

Additionally, the user is able to notice when the price oracle deviate fromthe real value of the asset, and this value cannot be influenced by anattacker.You've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.IAm0x52Escalate for 10 USDCDisagree with the comment above. Sponsor has clearly accepted issue and has notdisagreed with severity, which indicates they do not consider it an acceptable risksherlock-adminEscalate for 10 USDCDisagree with the comment above. Sponsor has clearly accepted issueand has not disagreed with severity, which indicates they do notconsider it an acceptable riskYou've created a valid escalation for 10 USDC!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.hrishibhatEscalation acceptedAccepting the first escalation as the severity of this impact can be consideredmedium based on the escalationsherlock-adminEscalation acceptedAccepting the first escalation as the severity of this impact can beconsidered medium based on the escalationThis issue's escalations have been accepted!Contestants' payouts and scores will be updated according to the changes madeon this issue.IAm0x52Fix looks good. Now uses steth/usd and eth/usd oracles in place of steth/ethoracles to reduce delay and deviation
22

Issue M-2: Normal users could be inadvertently grievedby the withdrawn ratios check
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/28
Found byRaymondFam
SummaryThe contract check on the withdrawn ratios of OHM and wstETH against thecurrent oracle price could run into grieving naive users by taking any wstETHshifted imbalance as a fee to the treasury even though these users have not gamedthe system.
Vulnerability DetailHere is a typical scenario, assuming the pool has been initiated with total LP equalto sqrt(100_000 * 1_000) = 10_000. (Note: OHM: $15, wstETH: $1500 with the poolpricing match up with manager.getOhmTknPrice() or manager.getTknOhmPrice(),i.e. 100 OHM to 1 wstETH or 0.01 wstETH to 1 OHM. The pool token balances ineach step below may be calculated via the Constant Product Simulation after eachswap and stake.)
OHM token balance: 100_000
wstETH token balance: 1_000
Total LP: 10_000

1. A series of swap activities results in the pool shifted more of the LP intowstETH.OHM token balance: 90_909.1 wstETH token balance: 1_100 Total LP: 10_0002. Bob calls deposit() by providing 11 wstETH where 1100 OHM is minted with1100 - 90909.1 * 0.01 = 190.91 unused OHM burned. (Note: Bob successfullystakes with 909.09 OHM and 11 wstETH and proportionately receives 100 LP.)OHM token balance: 91_818.19 wstETH token balance: 1_111 Total LP: 10_100User's LP: 1003. Bob changes his mind instantly and proceeds to call withdraw() to remove allof his LP. He receives the originally staked 909.09 OHM and 11 wstETH. AllOHM is burned but he is only entitled to receive 909.09 / 100 = 9.09 wstETHsince the system takes any arbs relative to the oracle price for the Treasuryand returns the rest to the owner.
23

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/28
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L156
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L232
https://amm-calculator.vercel.app/
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L143
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L187-L190
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L236-L240
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L247

OHM token balance: 90_909.1 wstETH token balance: 1_100 Total LP: 10_000User's LP: 0
ImpactBob suffers a loss of 11 - 9.09 = 1.91 wstETH (~ 17.36% loss), and the system isready to trap the next user given the currently imbalanced pool still shifted more ofthe LP into wstETH.
Code SnippetFile: BLVaultLido.sol#L143-L200File: BLVaultLido.sol#L203-L256
Tool usedManual Review
RecommendationConsider implementing a snapshot of the entry record of OHM and wstETH andcompare that with the proportionate exit record. Slash only the differential fortreasury solely on dissuading large attempts to shift the pool around, and in thiscase it should be 0 wstETH since the originally staked wstETH is no greater thanexpectedWstethAmountOut.
Discussion0xLienidTrue, but this will be very very minor in practice. It relies on assuming no arbitrageis ever taken, it will also be helped (but not eliminated) by the solution to #003
Discussion0xLienidTrue, but this will be very very minor in practice. It relies on assuming no arbitrageis ever taken, it will also be helped (but not eliminated) by the solution to #003IAm0x52Sponsor has acknowledged and accepted this risk

24

https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L143-L200
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultLido.sol#L203-L256

Issue M-3: SetLimit does not take into account burnedOHM
Source: https://github.com/sherlock-audit/2023-03-olympus-judging/issues/48
Found bychaduke, cducrest-brainbot
SummaryThe function setLimit() may not be able to sufficiently restrict mint ability ofmanager.
Vulnerability DetailThe setLimit() function reverts when newLimit_ < deployedOhm, mintOhmToVaultwill revert if deployedOhm + amount_ > ohmLimit + circulatingOhmBurned. If thevalue of circulatingOhmBurned is high, and the admin can only set the limit above
deployedOhm, they could end up in a state where they cannot limit the amount thevault is allowed to burn sufficiently. I.e. the vault is always able to mint at least
circulatingOhmBurned new tokens.Note that circulatingOhmBurned is never lowered (even when minting new tokens),so this value could grow arbitrarily high.
ImpactLack of control of admin on mint ability of manager.
Code SnippetSetLimit function:https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483
Tool usedManual Review
RecommendationUse similar restrictions as in mintOhmToVault() for setLimit or lower
circulatingOhmBurned when minting new OHM.

25

https://github.com/sherlock-audit/2023-03-olympus-judging/issues/48
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483
https://github.com/sherlock-audit/2023-03-olympus/blob/main/sherlock-olympus/src/policies/BoostedLiquidity/BLVaultManagerLido.sol#L480-L483

Discussion0xLienidSame issue as #0180xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/2/files
Discussion0xLienidSame issue as #0180xLienidFix Implementation: https://github.com/0xLienid/sherlock-olympus/pull/2/filesIAm0x52Fix looks good. setLimit now properly accounts for circulatingOhmBurned

26

https://github.com/0xLienid/sherlock-olympus/pull/2/files
https://github.com/0xLienid/sherlock-olympus/pull/2/files

