
SHERLOCK SECURITY REVIEW FOR

Prepared for: OlympusPrepared by: SherlockLead Security Expert: 0x52Dates Audited: December 5 - December 26, 2023Prepared on: January 29, 2024

Introduction
Olympus is building OHM, a community-owned, decentralized andcensorship-resistant reserve currency that is asset-backed, deeply liquid and usedwidely across Web3.
ScopeRepository: OlympusDAO/bophadesBranch: rbs-v2Commit: e0b5cd259d7a84db3a329dab3932ec8664ae1323
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High8 4
Issues not fixed or acknowledged

Medium High0 0
Security experts who found valid issues

1

hashtvdung94dany.armstrong90nobody2018nirohgoKupiaSecge6ajasonxialeast3ros

ArabadzhievrvierdiievDrynoooBauerbin2chenlemonmoncoffiasdevilakelalil.eth

CL0010xMR0cu5t0mPe0shealtielanzAuditorPraisejoviZanyBonzy0x52

2

Issue H-1: OlympusPrice.v2.sol#storePrice: The movingaverage prices are used recursively for the calculation ofthe moving average price.
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/55
Found bydany.armstrong90, nirohgo, nobody2018
SummaryThe moving average prices should be calculated by only oracle feed prices. Butnow, they are calculated by not only oracle feed prices but also moving averageprice recursively.That is, the storePrice function uses the current price obtained from the
_getCurrentPrice function to update the moving average price. However, in thecase of asset.useMovingAverage = true, the _getCurrentPrice function computesthe current price using the moving average price.Thus, the moving average prices are used recursively to calculate moving averageprice, so the current prices will be obtained incorrectly.
Vulnerability Detail
OlympusPrice.v2.sol#storePrice function is the following.

function storePrice(address asset_) public override permissioned {
Asset storage asset = _assetData[asset_];

// Check if asset is approved
if (!asset.approved) revert PRICE_AssetNotApproved(asset_);

// Get the current price for the asset
319: (uint256 price, uint48 currentTime) = _getCurrentPrice(asset_);

// Store the data in the obs index
uint256 oldestPrice = asset.obs[asset.nextObsIndex];
asset.obs[asset.nextObsIndex] = price;

// Update the last observation time and increment the next index
asset.lastObservationTime = currentTime;
asset.nextObsIndex = (asset.nextObsIndex + 1) % asset.numObservations;

3

// Update the cumulative observation, if storing the moving average
if (asset.storeMovingAverage)

331: asset.cumulativeObs = asset.cumulativeObs + price - oldestPrice;

// Emit event
emit PriceStored(asset_, price, currentTime);

}

L319 obtain the current price for the asset by calling the _getCurrentPrice functionand use it to update asset.cumulativeObs in L331. The _getCurrentPrice function isthe following.
function _getCurrentPrice(address asset_) internal view returns (uint256,
uint48) {,!

Asset storage asset = _assetData[asset_];

// Iterate through feeds to get prices to aggregate with strategy
Component[] memory feeds = abi.decode(asset.feeds, (Component[]));
uint256 numFeeds = feeds.length;

138: uint256[] memory prices = asset.useMovingAverage
? new uint256[](numFeeds + 1)
: new uint256[](numFeeds);

uint8 _decimals = decimals; // cache in memory to save gas
for (uint256 i; i < numFeeds;) {

(bool success_, bytes memory data_) =
address(_getSubmoduleIfInstalled(feeds[i].target)),!

.staticcall(
abi.encodeWithSelector(feeds[i].selector, asset_, _decimals,

feeds[i].params),!

);

// Store price if successful, otherwise leave as zero
// Idea is that if you have several price calls and just
// one fails, it'll DOS the contract with this revert.
// We handle faulty feeds in the strategy contract.
if (success_) prices[i] = abi.decode(data_, (uint256));

unchecked {
++i;

}
}

// If moving average is used in strategy, add to end of prices array
160: if (asset.useMovingAverage) prices[numFeeds] = asset.cumulativeObs /

asset.numObservations;,!

4

// If there is only one price, ensure it is not zero and return
// Otherwise, send to strategy to aggregate
if (prices.length == 1) {

if (prices[0] == 0) revert PRICE_PriceZero(asset_);
return (prices[0], uint48(block.timestamp));

} else {
// Get price from strategy
Component memory strategy = abi.decode(asset.strategy, (Component));
(bool success, bytes memory data) =

address(_getSubmoduleIfInstalled(strategy.target)),!

.staticcall(abi.encodeWithSelector(strategy.selector, prices,
strategy.params));,!

// Ensure call was successful
if (!success) revert PRICE_StrategyFailed(asset_, data);

// Decode asset price
uint256 price = abi.decode(data, (uint256));

// Ensure value is not zero
if (price == 0) revert PRICE_PriceZero(asset_);

return (price, uint48(block.timestamp));
}

}

As can be seen, when asset.useMovingAverage = true, the _getCurrentPricecalculates the current price price using the moving average price obtained by
asset.cumulativeObs / asset.numObservations in L160.So the price value in L331 is obtained from not only oracle feed prices but alsomoving average price. Then, storePrice calculates the cumulative observations
asset.cumulativeObs = asset.cumulativeObs + price - oldestPrice using the
price which is obtained incorrectly above.Thus, the moving average prices are used recursively for the calculation of themoving average price.
ImpactNow the moving average prices are used recursively for the calculation of themoving average price. Then, the moving average prices become more smoothedthan the intention of the administrator. That is, even when the actual pricefluctuations are large, the price fluctuations of _getCurrentPrice function willbecome too small.Moreover, even though all of the oracle price feeds fails, the moving averge prices

5

will be calculated only by moving average prices.Thus the current prices will become incorrect. If _getCurrentPrice function value ismiscalculated, it will cause fatal damage to the protocol.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/bophades/src/modules/PRICE/OlympusPrice.v2.sol#L312-L335https://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/bophades/src/modules/PRICE/OlympusPrice.v2.sol#L132-L184
Tool usedManual Review
RecommendationWhen updating the current price and cumulative observations in the storePricefunction, it should use the oracle price feeds and not include the moving averageprices. So, instead of using the asset.useMovingAverage state variable in the
_getCurrentPrice function, we can add a useMovingAverage parameter as thefollowing.
>> function _getCurrentPrice(address asset_, bool useMovingAverage) internal

view returns (uint256, uint48) {,!

Asset storage asset = _assetData[asset_];

// Iterate through feeds to get prices to aggregate with strategy
Component[] memory feeds = abi.decode(asset.feeds, (Component[]));
uint256 numFeeds = feeds.length;

>> uint256[] memory prices = useMovingAverage
? new uint256[](numFeeds + 1)
: new uint256[](numFeeds);

uint8 _decimals = decimals; // cache in memory to save gas
for (uint256 i; i < numFeeds;) {

(bool success_, bytes memory data_) =
address(_getSubmoduleIfInstalled(feeds[i].target)),!

.staticcall(
abi.encodeWithSelector(feeds[i].selector, asset_, _decimals,

feeds[i].params),!

);

// Store price if successful, otherwise leave as zero
// Idea is that if you have several price calls and just
// one fails, it'll DOS the contract with this revert.

6

// We handle faulty feeds in the strategy contract.
if (success_) prices[i] = abi.decode(data_, (uint256));

unchecked {
++i;

}
}

// If moving average is used in strategy, add to end of prices array
>> if (useMovingAverage) prices[numFeeds] = asset.cumulativeObs /

asset.numObservations;,!

// If there is only one price, ensure it is not zero and return
// Otherwise, send to strategy to aggregate
if (prices.length == 1) {

if (prices[0] == 0) revert PRICE_PriceZero(asset_);
return (prices[0], uint48(block.timestamp));

} else {
// Get price from strategy
Component memory strategy = abi.decode(asset.strategy, (Component));
(bool success, bytes memory data) =

address(_getSubmoduleIfInstalled(strategy.target)),!

.staticcall(abi.encodeWithSelector(strategy.selector, prices,
strategy.params));,!

// Ensure call was successful
if (!success) revert PRICE_StrategyFailed(asset_, data);

// Decode asset price
uint256 price = abi.decode(data, (uint256));

// Ensure value is not zero
if (price == 0) revert PRICE_PriceZero(asset_);

return (price, uint48(block.timestamp));
}

}

Then we should set useMovingAverage = false to call _getCurrentPrice functiononly in the storePrice function. In other cases, we should set useMovingAverage =
asset.useMovingAverage to call _getCurrentPrice function.
Discussion0xrusowsky

7

https://github.com/OlympusDAO/bophades/pull/257IAm0x52Fix looks good. The moving average is no longer included when storing price

8

IssueH-2: Incorrect ProtocolOwnedLiquidityOhmcalcu-lation due to inclusion of other user's reserves
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/172
Found byhash, tvdung94
SummaryProtocolOwnedLiquidityOhm for Bunni can include the liquidity deposited by otherusers which is not protocol owned
Vulnerability DetailThe protocol owned liquidity in Bunni is calculated as the sum of reserves of all theBunniTokens
function getProtocolOwnedLiquidityOhm() external view override returns (uint256)

{,!

uint256 len = bunniTokens.length;
uint256 total;
for (uint256 i; i < len;) {

TokenData storage tokenData = bunniTokens[i];
BunniLens lens = tokenData.lens;
BunniKey memory key = _getBunniKey(tokenData.token);

.........

total += _getOhmReserves(key, lens);
unchecked {

++i;
}

}

return total;
}

The deposit function of Bunni allows any user to add liquidity to a token. Hence thereturned reserve will contain amounts other than the reserves that actually belongto the protocol
9

// @audit callable by any user
function deposit(

DepositParams calldata params
)

external
payable
virtual
override
checkDeadline(params.deadline)
returns (uint256 shares, uint128 addedLiquidity, uint256 amount0, uint256
amount1),!

{
}

ImpactIncorrect assumption of the protocol owned liquidity and hence the supply. Anattacker can inflate the liquidity reserves The wider system relies on the supplycalculation to be correct in order to perform actions of economical impact
https://discord.com/channels/812037309376495636/1184355501258047488/118439790455 c

1628831,!

it will be determined to get backing
so it will have an economical impact, as we could be exchanging ohm for treasury

assets at a wrong price,!

Code SnippetPOL liquidity is calculated as the sum of bunni token reserves https://github.com/sherlock-audit/2023-11-olympus/blob/9c8df76dc9820b4c6605d2e1e6d87dcfa9e50070/bophades/src/modules/SPPLY/submodules/BunniSupply.sol#L171-L191BunniHub allows any user to deposithttps://github.com/sherlock-audit/2023-11-olympus/blob/9c8df76dc9820b4c6605d2e1e6d87dcfa9e50070/bophades/src/external/bunni/BunniHub.sol#L71-L106
Tool usedManual Review

10

RecommendationGuard the deposit function in BunniHub or compute the liquidity using sharesbelonging to the protocol
Discussion0xJemThis is a good catch, and the high level is justified0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/260IAm0x52Fix looks good. OnlyOwner modifier has been added to deposits

11

Issue H-3: Incorrect StablePool BPT price calculation
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/176
Found byBauer, ast3ros, ge6a, hash, jasonxiale, tvdung94
SummaryIncorrect StablePool BPT price calculation as rate's are not considered
Vulnerability DetailThe price of a stable pool BPT is computed as:minimum price among the pool tokens obtained via feeds * return valueof getRate()This method is used referring to an old documentation of Balancer
function getStablePoolTokenPrice(

address,
uint8 outputDecimals_,
bytes calldata params_

) external view returns (uint256) {
// Prevent overflow
if (outputDecimals_ > BASE_10_MAX_EXPONENT)

revert Balancer_OutputDecimalsOutOfBounds(outputDecimals_,
BASE_10_MAX_EXPONENT);,!

address[] memory tokens;
uint256 poolRate; // pool decimals
uint8 poolDecimals;
bytes32 poolId;
{

......

// Get tokens in the pool from vault
(address[] memory tokens_, ,) = balVault.getPoolTokens(poolId);
tokens = tokens_;

// Get rate
try pool.getRate() returns (uint256 rate_) {

if (rate_ == 0) {

12

revert Balancer_PoolStableRateInvalid(poolId, 0);
}

poolRate = rate_;

......

uint256 minimumPrice; // outputDecimals_
{

/**
* The Balancer docs do not currently state this, but a historical

version noted,!

* that getRate() should be multiplied by the minimum price of the
tokens in the,!

* pool in order to get a valuation. This is the same approach as used
by Curve stable pools.,!

*/
for (uint256 i; i < len; i++) {

address token = tokens[i];
if (token == address(0)) revert Balancer_PoolTokenInvalid(poolId, i,

token);,!

(uint256 price_,) = _PRICE().getPrice(token,
PRICEv2.Variant.CURRENT); // outputDecimals_,!

if (minimumPrice == 0) {
minimumPrice = price_;

} else if (price_ < minimumPrice) {
minimumPrice = price_;

}
}

}

uint256 poolValue = poolRate.mulDiv(minimumPrice, 10 ** poolDecimals); //
outputDecimals_,!

The getRate() function returns the exchange rate of a BPT to the underlying baseasset of the pool which can be different from the minimum market priced asset forpools with rateProviders. To consider this, the price obtained from feeds must bedivided by the rate provided by rateProviders before choosing the minimum asmentioned in the previous version of Balancer's documentation.https://github.com/balancer/docs/blob/663e2f4f2c3eee6f85805e102434629633af92a2/docs/concepts/advanced/valuing-bpt/bpt-as-collateral.md#metastablepool
13

s-eg-wsteth-weth
1. Get market price for each constituent token Get market price of wstETH andWETH in terms of USD, using chainlink oracles.
2. Get RateProvider price for each constituent token Since wstETH - WETH poolis a MetaStablePool and not a ComposableStablePool, it does not have
getTokenRate() function. Therefore, it‘s needed to get the RateProvider pricemanually for wstETH, using the rate providers of the pool. The rate provider willreturn the wstETH token in terms of stETH.Note that WETH does not have a rate provider for this pool. In that case, assume avalue of 1e18 (it means, market price of WETH won't be divided by any value, andit's used purely in the minPrice formula).
3. Get minimum price

minPrice = min(
PMwstETH

PRPwstETH
; PMWETH

)

4. Calculates the BPT price
PBPTwstETH�WETH

= minPrice � ratepoolwstETH�WETH

where rate_pool_wstETH-WETH is pool.getRate() of wstETH-WETH pool.
ExampleThe wstEth-cbEth pool is a MetaStablePool having rate providers for both tokenssince neither of them is the base token https://app.balancer.fi/#/ethereum/pool/0x9c6d47ff73e0f5e51be5fd53236e3f595c5793f200020000000000000000042cAt block 18821323: cbeth : 2317.48812 wstEth : 2526.84 pool total supply :0.273259897168240633 getRate() : 1.022627523581711856 wstRateprovider rate :1.150725009180224306 cbEthRateProvider rate : 1.058783029570983377 wstEthbalance : 0.133842314907166538 cbeth balance : 0.119822100236557012 tvl :(0.133842314907166538 * 2526.84 + 0.119822100236557012 * 2317.48812) ==615.884408812according to current implementation: bpt price = 2317.48812 *1.022627523581711856 == 2369.927137086 calculated tvl = bpt price * totalsupply = 647.606045776correct calculation: rate_provided_adjusted_cbeth = (2317.48812 /1.058783029570983377) == 2188.822502132 rate_provided_adjusted_wsteth =(2526.84 / 1.150725009180224306) == 2195.867804942 bpt price =

14

2188.822502132 * 1.022627523581711856 == 2238.350134915 calculated tvl = bptprice * total supply = (2238.350134915 * 0.273259897168240633) ==611.651327693
ImpactIncorrect calculation of bpt price. Has possibility to be over and under valued.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L514-L539
Tool usedManual Review
RecommendationFor pools having rate providers, divide prices by rate before choosing the minimum
Discussion0xJemThis is a valid issue and highlights problems with Balancer's documentation.We are likely to drop both the Balancer submodules from the final version, since weno longer have any Balancer pools used for POL and don't have any assets thatrequire price resolution via Balancer pools.sherlock-admin2EscalateThis is invalid. Never meant to interact with composable stable pools asshown by this comment here where they explicitly state it will revert if itis a composable stable pool:https://github.com/sherlock-audit/2023-11-olympus/blob/9c8df76dc9820b4c6605d2e1e6d87dcfa9e50070/bophades/src/modules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L441-L444
You've deleted an escalation for this issue.

15

IssueH-4: getBunniTokenPricewrongly returns the totalprice of all tokens
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/198
Found byArabadzhiev, Drynooo, ge6a, hash, jasonxiale, tvdung94
SummaryThe function getBunniTokenPrice() is supposed to return the price of 1 Bunni token(1 share) like all other feeds, but it doesn't. It returns the total price of all mintedtokens/shares for a specific pool (total value of position's reserves) which is wrong.
Vulnerability DetailThis happens because the totalValue on line 163 is not devided by the total tokenssupply.https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BunniPrice.sol#L110-L166
ImpactThe function getBunniTokenPrice always returns wrong price. This would impactthe operation of the RBS module. For instance, using the wrong price during a swapmay lead to financial losses for the protocol.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BunniPrice.sol#L110-L166
Tool usedManual Review
RecommendationDevide totalValue by the total tokens supply.

16

Discussion0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/244IAm0x52Fix looks good. Token price is now normalized to get price per token.

17

IssueM-1: BunniPrice.getBunniTokenPricedoesn't includefees
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/37
Found bydany.armstrong90, rvierdiiev, tvdung94
SummaryBunniPrice.getBunniTokenPrice doesn't include fees into calculation, which meansthat price will be smaller.
Vulnerability Detail
BunniPrice.getBunniTokenPrice function should return usd cost of bunniToken_.After initial checks this function actually do 2 things:• validate deviation• calculates total cost of tokenLet's check how it's done to calculate total cost of token. It's doneusing _getTotalValue function.So we get token reserves using _getBunniReserves function and the convert themto usd value and return the sum. _getBunniReserves in it's turn justfetches amount of token0 and token1 that can be received in case if you swap allbunni token liquidity right now in the pool.The problem is that this function doesn't include fees that are earned by theposition. As result total cost of bunni token is smaller than in reality. The differencedepends on the amount of fees there were earned and not returned back.Also when you do burn in the uniswap v3, then amount of token0/token1 is not sendback to the caller, but they are added to the position and can be collected later. Soin case if BunniPrice.getBunniTokenPrice will be called for the token, where someliquidity is burnt but not collected, then difference in real token price can be huge.
ImpactPrice for the bunni token can be calculated in wrong way.

18

Code SnippetProvided above
Tool usedManual Review
RecommendationInclude collected amounts and additionally earned fees to the position reserves.
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.nirohgo commented:duplicate of 1370xJemIMO this is medium or low severity - the fees will be compounded regularly, and soaren't going to increasing to a significant amount.nevillehuangHi @0xJem, since this could occur naturally without any external factors, I think itcould constitute high severity given important price values could be directlyaffected.Does the following mean uncollected fees are going to be collected by olympusregularly?the fees will be compounded regularly0xJemHi @0xJem, since this could occur naturally without any external factors,I think it could constitute high severity given important price values couldbe directly affected.Does the following mean uncollected fees are going to be collected byolympus regularly?the fees will be compounded regularlyYes we will have a keeper function calling the harvest() function on BunniManager.It can be called maximum once in 24 hours.

19

0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/244IAm0x52EscalateThis is simply another occurrence of #49 in a different location and should begrouped with itsherlock-admin2EscalateThis is simply another occurrence of #49 in a different location andshould be grouped with itYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuangAgree with @IAm0x52 , root cause is the same although with different impact, canbe duplicated.ArabadzhiewThis issue and its duplicates refer to an issue in the BunniPrice contract, whileissue #49 and its duplicates refer to an issue that is inside of the BunniSupplycontract. The root causes are clearly not the same, so I believe those two issuesshould stay separated in 2 different families.0xJemIMO it is separate. 49 refers to the TWAP and reserves check, whereas this isvaluing the LP position.IAm0x52Fix looks good. Fees are now also accounted for here as well.Czar102@IAm0x52 could you take another look and let me know if you agree with theabove comments?nevillehuang@Czar102 I think there was a separate fix with the 246 pull request for issue #49,so could indicate that they are not duplicates
20

Czar102Result: Medium Has duplicatesEscalation's author hasn't provided enough information to justify a change in statusof the issue.sherlock-admin2Escalations have been resolved successfully!Escalation status:• IAm0x52: rejected

21

Issue M-2: Inconsistency in BunniToken Price Calcula-tion
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/49
Found byArabadzhiev, KupiaSec, dany.armstrong90, hash, lil.eth, rvierdiiev
SummaryThe deviation check (_validateReserves()) from BunniPrice.sol considers bothposition reserves and uncollected fees when validating the deviation with TWAP,while the final price calculation (_getTotalValue()) only accounts for positionreserves, excluding uncollected fees.The same is applied to BunniSupply.sol where getProtocolOwnedLiquidityOhm()validates reserves + fee deviation from TWAP and then returns only Ohm reservesusing lens_.getReserves(key_)Note that BunniSupply.sol#getProtocolOwnedLiquidityReserves() validatesdeviation using reserves+fees with TWAP and then return reserves+fees in a goodway without discrepancy.But this could lead to a misalignment between the deviation check and actual pricecomputation.
Vulnerability Detail1. Deviation Check : _validateReserves Function:
BunniPrice.sol and BunniSupply.sol :

function _validateReserves(BunniKey memory key_,BunniLens lens_,uint16
twapMaxDeviationBps_,uint32 twapObservationWindow_) internal view,!

{
uint256 reservesTokenRatio = BunniHelper.getReservesRatio(key_, lens_);
uint256 twapTokenRatio = UniswapV3OracleHelper.getTWAPRatio(address(key_ c

.pool),twapObservationWindow_);,!

// Revert if the relative deviation is greater than the maximum.
if (

// `isDeviatingWithBpsCheck()` will revert if `deviationBps` is
invalid.,!

Deviation.isDeviatingWithBpsCheck(
reservesTokenRatio,
twapTokenRatio,

22

twapMaxDeviationBps_,
TWAP_MAX_DEVIATION_BASE

)
) {

revert BunniPrice_PriceMismatch(address(key_.pool), twapTokenRatio,
reservesTokenRatio);,!

}
}

BunniHelper.sol :
function getReservesRatio(BunniKey memory key_, BunniLens lens_) public view
returns (uint256) {,!

IUniswapV3Pool pool = key_.pool;
uint8 token0Decimals = ERC20(pool.token0()).decimals();

(uint112 reserve0, uint112 reserve1) = lens_.getReserves(key_);

//E compute fees and return values
(uint256 fee0, uint256 fee1) = lens_.getUncollectedFees(key_);

//E calculates ratio of token1 in token0
return (reserve1 + fee1).mulDiv(10 ** token0Decimals, reserve0 + fee0);

}

UniswapV3OracleHelper.sol :
//E Returns the ratio of token1 to token0 in token1 decimals based on the
TWAP,!

//E used in bophades/src/modules/PRICE/submodules/feeds/BunniPrice.sol,
and SPPLY/submodules/BunniSupply.sol,!

function getTWAPRatio(
address pool_,
uint32 period_ //E period of the TWAP in seconds

) public view returns (uint256)
{

//E return the time-weighted tick from period_ to now
int56 timeWeightedTick = getTimeWeightedTick(pool_, period_);

IUniswapV3Pool pool = IUniswapV3Pool(pool_);
ERC20 token0 = ERC20(pool.token0());
ERC20 token1 = ERC20(pool.token1());

// Quantity of token1 for 1 unit of token0 at the time-weighted tick
// Scale: token1 decimals
uint256 baseInQuote = OracleLibrary.getQuoteAtTick(

int24(timeWeightedTick),
uint128(10 ** token0.decimals()), // 1 unit of token0 => baseAmount
address(token0),

23

address(token1)
);
return baseInQuote;

}

You can see that the deviation check includes uncollected fees in the
reservesTokenRatio, potentially leading to a higher or more volatile ratio comparedto the historical twapTokenRatio.2. Final Price Calculation in BunniPrice.sol#_getTotalValue() :
function _getTotalValue(

BunniToken token_,
BunniLens lens_,
uint8 outputDecimals_

) internal view returns (uint256) {
(address token0, uint256 reserve0, address token1, uint256 reserve1) =
_getBunniReserves(,!

token_,
lens_,
outputDecimals_

);
uint256 outputScale = 10 ** outputDecimals_;

// Determine the value of each reserve token in USD
uint256 totalValue;
totalValue += _PRICE().getPrice(token0).mulDiv(reserve0, outputScale);
totalValue += _PRICE().getPrice(token1).mulDiv(reserve1, outputScale);

return totalValue;
}

You can see that this function (_getTotalValue()) excludes uncollected fees in thefinal valuation, potentially overestimating the total value within deviation checkprocess, meaning the check could pass in certain conditions whereas it could havenot pass if fees where not accounted on the deviation check. Moreover the belowformula used :
priceLP = reserve0 � price0 + reserve1 � price1

where reservei is token i reserve amount, pricei is the price of token iIn short, it is calculated by getting all underlying balances, multiplying those bytheir market pricesHowever, this approach of directly computing the price of LP tokens via spot
24

reserves is well-known to be vulnerable to manipulation, even if TWAP Deviation ischecked, the above summary proved that this method is not 100% bullet proof asthere are discrepancy on what is mesured. Taken into the fact that the process tocheck deviation is not that good plus the fact that methodology used to computeprice is bad, the impact of this is high4. The same can be found in BunnySupply.sol
getProtocolOwnedLiquidityReserves() :

function getProtocolOwnedLiquidityReserves()
external
view
override
returns (SPPLYv1.Reserves[] memory)

{
// Iterate through tokens and total up the reserves of each pool
uint256 len = bunniTokens.length;
SPPLYv1.Reserves[] memory reserves = new SPPLYv1.Reserves[](len);
for (uint256 i; i < len;) {

TokenData storage tokenData = bunniTokens[i];
BunniToken token = tokenData.token;
BunniLens lens = tokenData.lens;
BunniKey memory key = _getBunniKey(token);
(

address token0,
address token1,
uint256 reserve0,
uint256 reserve1

) = _getReservesWithFees(key, lens);

// Validate reserves
_validateReserves(

key,
lens,
tokenData.twapMaxDeviationBps,
tokenData.twapObservationWindow

);

address[] memory underlyingTokens = new address[](2);
underlyingTokens[0] = token0;
underlyingTokens[1] = token1;
uint256[] memory underlyingReserves = new uint256[](2);
underlyingReserves[0] = reserve0;
underlyingReserves[1] = reserve1;

reserves[i] = SPPLYv1.Reserves({
source: address(token),

25

tokens: underlyingTokens,
balances: underlyingReserves

});

unchecked {
++i;

}
}

return reserves;
}

Where returned value does not account for uncollected fees whereas deviationcheck was accounting for it
Impact
_getTotalValue() from BunniPrice.sol and getProtocolOwnedLiquidityReserves()from BunniSupply.sol have both ratio computation that includes uncollected fees tocompare with TWAP ratio, potentially overestimating the total value compared towhat these functions are aim to, which is returning only the reserves or LP Pricesby only taking into account the reserves of the pool. Meaning the check could passin certain conditions where fees are included in the ratio computation and thedeviation check process whereas the deviation check should not have pass withoutthe fees accounted.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/SPPLY/submodules/BunniSupply.sol#L212-L260https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BunniPrice.sol#L110
Tool usedManual Review
RecommendationAlign the methodology used in both the deviation check and the final pricecomputation. This could involve either including the uncollected fees in bothcalculations or excluding them in both.It's ok for BunniSupply as there are 2 functions handling both reserves andreserves+fees but change deviation check process on the second one to include

26

only reserves when checking deviation twap ratio
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.nirohgo commented:True observation but the effect on deviation is miniscule and no viablescenario has been shown that leads to a loss of material amounts.0xJemAccurate that uncollected fees are excluded from the TWAP check but included inthe reserves check, which could lead to inconsistencies. This has been madeconsistent now.this approach of directly computing the price of LP tokens via spotreserves is well-known to be vulnerable to manipulationWe are aware, hence the reserves & TWAP check, plus re-entrancy check.0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/244https://github.com/OlympusDAO/bophades/pull/246IAm0x52Fix looks good. Fees are now included in determining bunni token price. Fees arenow not considered in BunniHelper#getFullRangeBunniKey

27

Issue M-3: Price can be miscalculated.
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/56
Found bydany.armstrong90
SummaryIn SimplePriceFeedStrategy.sol#getMedianPrice function, when the length of
nonZeroPrices is 2 and they are deviated it returns first non-zero value, not medianvalue.
Vulnerability Detail
SimplePriceFeedStrategy.sol#getMedianPriceIfDeviation is as follows.

function getMedianPriceIfDeviation(
uint256[] memory prices_,
bytes memory params_

) public pure returns (uint256) {
// Misconfiguration
if (prices_.length < 3) revert

SimpleStrategy_PriceCountInvalid(prices_.length, 3);,!

237 uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);

// Return 0 if all prices are 0
if (nonZeroPrices.length == 0) return 0;

// Cache first non-zero price since the array is sorted in place
uint256 firstNonZeroPrice = nonZeroPrices[0];

// If there are not enough non-zero prices to calculate a median, return
the first non-zero price,!

246 if (nonZeroPrices.length < 3) return firstNonZeroPrice;

uint256[] memory sortedPrices = nonZeroPrices.sort();

// Get the average and median and abort if there's a problem
// The following two values are guaranteed to not be 0 since

sortedPrices only contains non-zero values and has a length of 3+,!

uint256 averagePrice = _getAveragePrice(sortedPrices);
253 uint256 medianPrice = _getMedianPrice(sortedPrices);

28

if (params_.length != DEVIATION_PARAMS_LENGTH) revert
SimpleStrategy_ParamsInvalid(params_);,!

uint256 deviationBps = abi.decode(params_, (uint256));
if (deviationBps <= DEVIATION_MIN || deviationBps >= DEVIATION_MAX)

revert SimpleStrategy_ParamsInvalid(params_);

// Check the deviation of the minimum from the average
uint256 minPrice = sortedPrices[0];

262 if (((averagePrice - minPrice) * 10000) / averagePrice > deviationBps)
return medianPrice;,!

// Check the deviation of the maximum from the average
uint256 maxPrice = sortedPrices[sortedPrices.length - 1];

266 if (((maxPrice - averagePrice) * 10000) / averagePrice > deviationBps)
return medianPrice;,!

// Otherwise, return the first non-zero value
return firstNonZeroPrice;

}

As you can see above, on L237 it gets the list of non-zero prices. If the length ofthis list is smaller than 3, it assumes that a median price cannot be calculated andreturns first non-zero price. This is wrong. If the number of non-zero prices is 2 andthey are deviated, it has to return median value. The _getMedianPrice functioncalled on L253 is as follows.
function _getMedianPrice(uint256[] memory prices_) internal pure returns

(uint256) {,!

uint256 pricesLen = prices_.length;

// If there are an even number of prices, return the average of the two
middle prices,!

if (pricesLen % 2 == 0) {
uint256 middlePrice1 = prices_[pricesLen / 2 - 1];
uint256 middlePrice2 = prices_[pricesLen / 2];
return (middlePrice1 + middlePrice2) / 2;

}

// Otherwise return the median price
// Don't need to subtract 1 from pricesLen to get midpoint index
// since integer division will round down
return prices_[pricesLen / 2];

}

As you can see, the median value can be calculated from two values. This problemexists at getMedianPrice function as well.
29

function getMedianPrice(uint256[] memory prices_, bytes memory) public pure
returns (uint256) {,!

// Misconfiguration
if (prices_.length < 3) revert
SimpleStrategy_PriceCountInvalid(prices_.length, 3);,!

uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);

uint256 nonZeroPricesLen = nonZeroPrices.length;
// Can only calculate a median if there are 3+ non-zero prices
if (nonZeroPricesLen == 0) return 0;
if (nonZeroPricesLen < 3) return nonZeroPrices[0];

// Sort the prices
uint256[] memory sortedPrices = nonZeroPrices.sort();

return _getMedianPrice(sortedPrices);
}

ImpactWhen the length of nonZeroPrices is 2 and they are deviated, it returns firstnon-zero value, not median value. It causes wrong calculation error.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/bophades/src/modules/PRICE/submodules/strategies/SimplePriceFeedStrategy.sol#L246
Tool usedManual Review
RecommendationFirst, SimplePriceFeedStrategy.sol#getMedianPriceIfDeviation function has to berewritten as follows.

function getMedianPriceIfDeviation(
uint256[] memory prices_,
bytes memory params_

) public pure returns (uint256) {
// Misconfiguration

30

if (prices_.length < 3) revert
SimpleStrategy_PriceCountInvalid(prices_.length, 3);,!

uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);

// Return 0 if all prices are 0
if (nonZeroPrices.length == 0) return 0;

// Cache first non-zero price since the array is sorted in place
uint256 firstNonZeroPrice = nonZeroPrices[0];

// If there are not enough non-zero prices to calculate a median, return
the first non-zero price,!

- if (nonZeroPrices.length < 3) return firstNonZeroPrice;
+ if (nonZeroPrices.length < 2) return firstNonZeroPrice;

...
}

Second, SimplePriceFeedStrategy.sol#getMedianPrice has to be modified asfollowing.
function getMedianPrice(uint256[] memory prices_, bytes memory) public pure
returns (uint256) {,!

// Misconfiguration
if (prices_.length < 3) revert

SimpleStrategy_PriceCountInvalid(prices_.length, 3);,!

uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);

uint256 nonZeroPricesLen = nonZeroPrices.length;
// Can only calculate a median if there are 3+ non-zero prices
if (nonZeroPricesLen == 0) return 0;

- if (nonZeroPricesLen < 3) return nonZeroPrices[0];
+ if (nonZeroPricesLen < 2) return nonZeroPrices[0];

// Sort the prices
uint256[] memory sortedPrices = nonZeroPrices.sort();

return _getMedianPrice(sortedPrices);
}

Discussion0xJem
31

Agree with the highlighted issue, disagree with the proposed solution.0xJemhttps://github.com/OlympusDAO/bophades/pull/282IAm0x52Fix looks good. Now falls back to getAveragePriceIfDeviation() instead of returningfirst.

32

Issue M-4: Price calculation can be manipulated by in-tentionally reverting some of price feeds.
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/127
Found byKupiaSec
SummaryPrice calculation module iterates through available price feeds for the requestedasset, gather prices of non-revert price feeds and then apply strategy on availableprices to calculate final asset price. By abusing this functionality, an attacker canlet some price feeds revert to get advantage from any manipulated price feed.
Vulnerability DetailHere we have some methods that attackers can abuse to intentionally revert pricefeeds.1. UniswapV3 price feed UniswapV3Price.sol#L210-214
// Get the current price of the lookup token in terms of the quote token
(, int24 currentTick, , , , , bool unlocked) = params.pool.slot0();

// Check for re-entrancy
if (unlocked == false) revert UniswapV3_PoolReentrancy(address(params.pool));

In UniswapV3 price feed, it reverts if current state is re-entered. An attacker canintentionally revert this price feed by calling it from UniswapV3's callback methods.2. Balancer price feed BalancerPoolTokenPrice.sol#L388 BalancerPoolTokenPrice.sol#487 BalancerPoolTokenPrice.sol#599 BalancerPoolTokenPrice.sol#748
// Prevent re-entrancy attacks
VaultReentrancyLib.ensureNotInVaultContext(balVault);

In BalancerPool price feed, it reverts if current state is re-entered. An attacker canintentionally revert this price feed by calling it in the middle of Balancer action.3. BunniToken price feed BunniPirce.sol#L155-160
_validateReserves(

_getBunniKey(token),

33

lens,
params.twapMaxDeviationsBps,
params.twapObservationWindow

);

In BunniToken price feed, it validates reserves and reverts if it doesn't satisfydeviation. Since BunniToken uses UniswapV3, this can be intentionally reverted bycalling it from UniswapV3's mint callback.
Usually for ERC20 token prices, above 3 price feeds are commonly used combinedwith Chainlink price feed, and optionally with averageMovingPrice. There areanother two points to consider here:1. When average moving price is used, it is appended at the end of the pricearray. OlympusPrice.v2.sol#L160
if (asset.useMovingAverage) prices[numFeeds] = asset.cumulativeObs /

asset.numObservations;,!

2. In price calculation strategy, first non-zero price is used when there are 2 validprices: getMedianPriceIfDeviation - SimplePriceFeedStrategy.sol#L246
getMedianPrice - SimplePriceFeedStrategy.sol#L313 For getAveragePrice and
getAveragePriceIfDeviation, it uses average price if it deviates.

Based on the information above, here are potential attack vectors that attackerswould try:1. When Chainlink price feed is manipulated, an attacker can disable all threeabove price feeds intentionally to get advantage of the price manipulation.2. When Chainlink price feed is not used for an asset, an attacker can manipulateone of above 3 spot price feeds and disable other ones.When averageMovingPrice is used and average price strategy is applied, themanipulation effect becomes half:
(P+�X)+(P)

2
= P + �X

2
; P =MarketPrice;�X =ManipulatedAmount

ImpactAttackers can disable some of price feeds as they want with ease, they can getadvantage of one manipulated price feed.

34

Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/9c8df76dc9820b4c6605d2e1e6d87dcfa9e50070/bophades/src/modules/PRICE/OlympusPrice.v2.sol#L132-L184
Tool usedManual Review
RecommendationFor the cases above that price feeds being intentionally reverted, the pricecalculation itself also should revert without just ignoring it.
DiscussionnevillehuangInvalid, if a user purposely revert price feeds, they are only affecting their ownusage, not the usage of price feeds for other users transactions.KupiaSecAdminEscalateHey @nevillehuang - Yes, exactly you are right. What an attacker can manipulate isa spot price using flashloans, so if an attacker purposely disable other price feedsbut only leave manipulated price feed, there happens a vulnerability that anattacker can buy tokens at affected price.sherlock-admin2EscalateHey @nevillehuang - Yes, exactly you are right. What an attacker canmanipulate is a spot price using flashloans, so if an attacker purposelydisable other price feeds but only leave manipulated price feed, therehappens a vulnerability that an attacker can buy tokens at affected price.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuang@KupiaSecAdmin, All of your scenarios are invalid

35

1. There is no point for somebody to reenter to explicity cause a revert for usingthe price feed himself2. Same reason as 1.3. There is no point for somebody to cause a deviation to explicity cause a revertfor using the price feed himself4. A user cannot manipulate a chainlink price feed since there are no reservesThis is on top of the fact that price submodules are not intended to be calleddirectly, but via the primary price module mentioned in this comment hereKupiaSecAdmin@nevillehuang - For example, you can manipulate spot price of Uniswap. To makethis work, you need to make other price feeds revert because if they are allenabled, average/median price strategy will be taken and manipulated spot pricewill not take effect.nevillehuang@KupiaSecAdmin you cannot make other feeds revert for other user, only yourself,and your submission certainly doesn't prove that it is possible. Besides, tomanipulate spot price in uniswap, you will have to manipulate the reserves, which isa known issue in the contest and out of scope.KupiaSecAdmin@nevillehuang - I would like to add some notes and scenarios below that I thinkmight be attack vectors. @0xJem - I would be happy to get some feedbacks fromthe protocol team regarding the issue.[Notes]1. (I believe) This price module will be used in other parts of Olympus protocol todetermine fair price of OHM(and other ERC20 tokens) at any time byintegrating multiple price feeds and applying a strategy(average or median) todifferent prices to carry out final fair price.2. The carried out final price will be used to buy/sell OHM tokens using othercollaterals in other modules of Olympus protocol.[Scenario]1. Let's assume that an attacker can manipulate a spot price of one price feed,e.g. Uni2, Uni3, Bunni. It can not be guaranteed that all spot price feeds workcorrectly.2. As a result, we can assume that the attacker can manipulate OHM price of oneprice feed to $9(for example by manipulating Bunni).
36

3. However, multiple price feeds are used to calculate fair OHM price, forexample, 3 strategies can be used to determine fair OHM price: Chainlink,Uniswap3, Bunni. Thus assume Chainlink returns $11.1 and Uniswap3 returns$11.05 for OHM price.4. The price strategy takes median strategy, this means manipulating Bunni pricefeeds does not take effect on final OHM price determination because themedian price of ($9, $11.05, $11.1) is $11.05 which could be accepted as fairOHM price.5. Now, the attacker can intentionally make Uniswap 3 price feed reverting usingre-entrancy.6. When this happens, the only available price feeds are Chainlink and Bunnywhich are $9 and $11.1. Median price strategy is applied to these feeds thusreturning $10 as OHM price, which is affected and this could result in attackercan buy more OHM tokens than expected.[Thoughts] Price feeds can revert for any reason by accidents so it would actuallymake sense using try/catch to ignore reverted price feeds. However, price feedsbeing reverted because of re-entrancy check can not be considered as accidentsbecause it's intentional and unusual behavior. So I think it's the right behavior torevert price calculation itself as a whole when any price feed is reverted byre-entrancy check.[Claims] @nevillehuang - You were mentioning that I can not make other feedsrevert for other users but only for myself. Yes, that's right. An attacker will let someprice feeds revert only for himself(and only within a single transaction, they shouldwork fine in other transactions), and it is to manipulate final fair price of tokensregardless of whatever strategy is taken.nevillehuang@KupiaSecAdmin Can you provide a coded PoC for your above scenario? I reallydon't see how step 5 can occur, given price feeds are utilized in separatetransactions? How would one users price feed reverting affect another?5. Now, the attacker can intentionally make Uniswap 3 price feedreverting using re-entrancy.KupiaSecAdmin@nevillehuang @0xJem - Here's a PoC that shows how price can be manipulated.You can put this test file in same test directory with PRICE.v2.t.sol.https://gist.github.com/KupiaSecAdmin/fc7ef6664b191ab2b758a22ab15bf404Running test: forge test --fork-url {{MAINNET_RPC}} --fork-block-number
19041673 --match-test testPriceManipulation -vvResult:

37

[PASS] testPriceManipulation() (gas: 2299239)
Logs:

Before: Chainklink/Olympus 6294108760000000000 6308514491323687440
After: Chainklink/Olympus 6294108760000000000 29508079057029841191

Test result: ok. 1 passed; 0 failed; 0 skipped; finished in 4.69s

Ran 1 test suites: 1 tests passed, 0 failed, 0 skipped (1 total tests)

[Scenario]1. It calculates UNI price using mainnet's forked data.2. It is assumed that Olympus uses UniV2 and UniV3 price feeds for calculatingUNI price.3. The test manipulates UniV2 price and intentionally reverts UniV3 price feed,thus the final price is same as manipulated UniV2 price.[Focus]1. Even though test shows price manipulation is done via reserves, but reservemanipulation is not the only way of manipulating price, as Olympus integratesfurther more price feeds and based on protocols.2. The main point to show from the issue and PoC is that intentionally revertingsome price feeds is dangerous because that can be a cause of pricemanipulation.0xJem@Oighty can you weigh in on the risk of a third-party deliberately triggering there-entrancy lock in the UniV3 pool?To me, this represents a misconfiguration of the asset price feeds.If it was a single price feed (UniV3) only, it would be fine, as the price lookup wouldfail. It's because there's a UniV2 pool in use that this could be susceptible to theprice manipulation as you described. However, this feels unlikely because:• The depth of liquidity on the UNI / WETH UniV2 pool is $4.32m, which feelstoo low for a UniV3 pool (let alone UniV2!), and so we'd be unlikely to use it.• For an asset that does not have as much liquidity (e.g. we are following thisapproach for FXS), we track an internal MA and use that, which ensures thatany manipulation is smoothed out.If we were to have UNI defined as an asset, we would be more likely to do this:• UNI/ETH Chainlink feed
38

• UNI/wETH UniV3 pool with TWAPGiven the difficulty of manipulation both sources, and the deep liquidity of theUniV3 pool ($31.65m), we'd be confident that it would be resilient enough.nevillehuang• UNI wasn't mentioned as an integrated token in the contest details, sowouldn't this be invalid?• Olympus also has many mitigations in place for TWAP manipulationCzar102I think this is a really nice finding if true, kudos for the thought process@KupiaSecAdmin!Since price manipulation itself is out of scope, but the expectation of using multipleprice sources should make the price more difficult to manipulate, and because ofthe bug, the breakdown value falls drastically. Thus I believe it deserves to be avalid Medium.I'm not sure about the point above, @0xJem could you explain why would suchsetup be a misconfiguration? From my understanding, any setup using any of these3 oracles and any other one will be susceptible to manipulation.nevillehuang@Czar102 Some questions:1. Is there anywhere it was indicated that the above uni pools would be used asprice feeds? Given the watson made an assumption:assumed that Olympus uses UniV2 and UniV3 price feeds for calculatingUNI price.2. Isn't the additional data provided by the watson still related to manipulation ofreserves and like you said out of scope? To me he still hasn't prove that thereis any other cause other than manipulating reserves other than stating apossibility? Would be nice if he can prove this issues above scenario of 1 and2 (reentrancy triggering affecting price feed of other users?)3. Dont Olympus use an internal MA to mitigate risk of reserve manipulation?0xJemI'm not sure about the point above, @0xJem could you explain whywould such setup be a misconfiguration? From my understanding, anysetup using any of these 3 oracles and any other one will be susceptibleto manipulation.

39

• Given the risk of a single price feed reverting (causing the 2nd price feed to beused), we would not use a UniV2 (which doesn't have re-entrancy protectionand is much more susceptible to manipulation) pool as the second feed.• Instead of this UniV3 + UniV3 combination, if we were to configure in PRICEfor this asset, we would do a Chainlink feed (e.g. UNI-USD, no idea if it exists)and a UniV3 pool.Czar102@nevillehuang I believe the assumption you are mentioning in point 1 is just anexample and the different price feeds could be anything, like Uni v3 + Uni v3 – onecould manipulate one of these and make the other revert, for example.Regarding point 2, I don't think the crux here is the manipulation of reserves, theymay be just off with respect to each other. The point is that the attacker canselectively decide which sources of information to use, impacting the final pricereading. The point of using multiple feeds is to make the price more reliable, andthey are being made less reliable if you can make the readings be rejected.Regarding point 3, I believe you could repetitively make the price pass sanitychecks, making it exponentially diverge from the real price.Regarding @0xJem's points: I believe simply not using a Uni v2 pool doesn'tmitigate this. Using any of the dexes mentioned above together with any feed willhave this impact. So, a Chainlink feed + Uni v3 pool could be exploited in a way thatthe Uni v3 reading will revert and only Chainlink feed will be used, which maybenefit the attacker in a certain way.Has the approach for creating these safe setups been shared with Watsonsanywhere? Am I misunderstanding something? @0xJem @nevillehuang@KupiaSecAdminnevillehuang@Czar102• What is the cost of manipulating such price feeds, is it even profitable for theuser?• The ORIGINAL issue certainly doesn't have sufficient proof to prove thatanything other than manipulation of reserves will cause price feed revert orshow that it is viable/economically viable. Until the watson prove to me with areasonable PoC that it is possible, I cannot verify validity, especially not withinformation from the original submission. If a judge has to do alot of additionalresearch apart from what is provided in the issue, it certainly doesn’t help too.2. In case of non-obvious issues with complex vulnerabilities/attackpaths, Watson must submit a valid POC for the issue to beconsidered valid and rewarded.
40

• The watson is speculating on how protocol will configure and select differentprice feeds. Like @0xJem mentioned, this is protocol determined so the abovementioned possibilities are all possible assumptions. “Could be anything” is aweak argument and based off your previous statement here it doesn’t line up,given configurations of price feeds are not explicitly mentioned in docsTLDR, unless the watson or YOU provide sufficient proof (best with a PoC) that it iseconomically possible/profitable, I’m not convinced this is a valid issue since youare just simply stating possibility. Please only consider the original submission onlyand see if it has sufficient information in place during the time when Im judging this.Hash01011122IMO In my opinion, while the precise impact of the potential attack isn't crystalclear, the mentioned attack path, extending up to price manipulation, significantlyexpands the attack surface. This broader surface introduces multiple avenues forpotential attacks that may not be immediately apparent. I find @nevillehuang'scomment lacking in persuasiveness, on how this issue should be considered asinvalid after watson submitted the PoC. With a clear attack impact, Watson'ssubmission should be rated as High severity. Watson's failure to articulate how theidentified issue could result in a loss of funds for the protocol is crucial. But theissue highlights numerous ways the core functionality of the contract could beexploited, making it a valid medium-severity concern.nevillehuang@Hash01011122, stating the possibility of an issue and proving it are two separatethings. Can you look at the details provided in the issue and tell me with at least80% confidence rate that it is valid without additional research by the judge toprove its validity when its not the case?For example, the watson is simply stating "user can cause reentrancy" with a singleone liner type comment without any code description/POC (there are multipleinstances throughout the issue)? How am I suppose to verify that? I am a firmbeliever that burden of proof is on the watson not the judge, and I believe sherlockalso enforces this stance.The fact that Head of judging and sponsor has to come in and supplement thenon-obvious finding of the watson certainly doesn't help too, and I believe this willbe resolved in the future now that we have the request poc feature, but I believe asof contest date, the information provided in the ORIGINAL submission is insufficientto warrant its severity other than low/invalid.Czar102I understood the finding when I haven't read a half or it. I think the only thing thatneeds to be verified is that a revert in price reading will cause the price to becomputed based on other sources.
41

Selective manipulation of sources of information defeats the purpose of sourcingthe data from many sources – instead of increasing security, the data will be pulledfrom potentially least safe sources.I think it warrants Medium severity.nevillehuang@Czar102 ok got it I put it on myself for not having the knowledge u possess tounderstand this issue. I will let you decide once you decide what @0xJemconsiders. Again understanding and proving to issue is two separate issues fordebate.Czar102Result: Medium Uniquesherlock-admin2Escalations have been resolved successfully!Escalation status:• KupiaSecAdmin: accepted

42

IssueM-5: getReservesByCategory()whenuseSubmod-ules =true and submoduleReservesSelector=bytes4(0)will revert
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/149
Found bybin2chen, dany.armstrong90, lemonmon, rvierdiiev
Summaryin getReservesByCategory() Lack of check data.submoduleReservesSelector!=""when call submod-
ule.staticcall(abi.encodeWithSelector(data.submoduleReservesSelector)); willrevert
Vulnerability Detailwhen _addCategory() if useSubmodules==true, submoduleMetricSelector must notempty and submoduleReservesSelector can empty (bytes4(0))like "protocol-owned-treasury"
_addCategory(toCategory("protocol-owned-treasury"), true, 0xb600c5e2,

0x00000000); // getProtocolOwnedTreasuryOhm()`,!

but when call getReservesByCategory() , don't check
submoduleReservesSelector!=bytes4(0) and direct call submoduleReservesSelector

function getReservesByCategory(
Category category_

) external view override returns (Reserves[] memory) {
...

// If category requires data from submodules, count all submodules and
their sources.,!

len = (data.useSubmodules) ? submodules.length : 0;

...

for (uint256 i; i < len;) {
address submodule = address(_getSubmoduleIfInstalled(submodules[i]));
(bool success, bytes memory returnData) = submodule.staticcall(

43

abi.encodeWithSelector(data.submoduleReservesSelector)
);

this way , when call like
getReservesByCategory(toCategory("protocol-owned-treasury") will revert
POCadd to SUPPLY.v1.t.sol

function test_getReservesByCategory_includesSubmodules_treasury() public {
_setUpSubmodules();

// Add OHM/gOHM in the treasury (which will not be included)
ohm.mint(address(treasuryAddress), 100e9);
gohm.mint(address(treasuryAddress), 1e18); // 1 gOHM

// Categories already defined

uint256 expectedBptDai = BPT_BALANCE.mulDiv(
BALANCER_POOL_DAI_BALANCE,
BALANCER_POOL_TOTAL_SUPPLY

);
uint256 expectedBptOhm = BPT_BALANCE.mulDiv(

BALANCER_POOL_OHM_BALANCE,
BALANCER_POOL_TOTAL_SUPPLY

);

// Check reserves
SPPLYv1.Reserves[] memory reserves = moduleSupply.getReservesByCategory(

toCategory("protocol-owned-treasury")
);

}

forge test -vv --match-test
test_getReservesByCategory_includesSubmodules_treasury,!

Running 1 test for src/test/modules/SPPLY/SPPLY.v1.t.sol:SupplyTest
[FAIL. Reason: SPPLY_SubmoduleFailed(0xeb502B1d35e975321B21cCE0E8890d20a7Eb289d,

0x00)]
test_getReservesByCategory_includesSubmodules_treasury() (gas: 4774197

,!

,!

Impactsome category can't get Reserves
44

Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/SPPLY/OlympusSupply.sol#L541
Tool usedManual Review
Recommendation

function getReservesByCategory(
Category category_

) external view override returns (Reserves[] memory) {
...

CategoryData memory data = categoryData[category_];
uint256 categorySubmodSources;
// If category requires data from submodules, count all submodules and

their sources.,!

- len = (data.useSubmodules) ? submodules.length : 0;
+ len = (data.useSubmodules && data.submoduleReservesSelector!=bytes4(0))

? submodules.length : 0;,!

Discussion0xJemGood catch! Thank you for the clear explanation and test case, too.0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/262IAm0x52Fix looks good, exactly as suggested

45

IssueM-6: Balancer LP valuationmethodologies use theincorrect supply metric
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/155
Found by0x52, 0xMR0, Arabadzhiev, AuditorPraise, Bauer, CL001, Drynooo, ZanyBonzy,ast3ros, bin2chen, coffiasd, cu5t0mPe0, ge6a, hash, jovi, shealtielanz, tvdung94
SummaryIn various Balancer LP valuations, totalSupply() is used to determine the total LPsupply. However this is not the appropriate method for determining the supply.Instead getActualSupply should be used instead. Depending on the which poolimplementation and how much LP is deployed, the valuation can be much too highor too low. Since the RBS pricing is dependent on this metric. It could lead to RBSbeing deployed at incorrect prices.
Vulnerability DetailAuraBalancerSupply.sol#L345-L362
uint256 balTotalSupply = pool.balancerPool.totalSupply();
uint256[] memory balances = new uint256[](_vaultTokens.length);
// Calculate the proportion of the pool balances owned by the polManager
if (balTotalSupply != 0) {

// Calculate the amount of OHM in the pool owned by the polManager
// We have to iterate through the tokens array to find the index of OHM
uint256 tokenLen = _vaultTokens.length;
for (uint256 i; i < tokenLen;) {

uint256 balance = _vaultBalances[i];
uint256 polBalance = (balance * balBalance) / balTotalSupply;

balances[i] = polBalance;

unchecked {
++i;

}
}

}

46

To value each LP token the contract divides the valuation of the pool by the totalsupply of LP. This in itself is correct, however the totalSupply method for a varietyof Balancer pools doesn't accurately reflect the true LP supply. If we take a look ata few Balancer pools we can quickly see the issue:This pool shows a max supply of 2,596,148,429,273,858 whereas the actual supplyis 6454.48. In this case the LP token would be significantly undervalued. If asizable portion of the reserves are deployed in an affected pool the backing perOHM would appear to the RBS system to be much lower than it really is. As a resultit can cause the RBS to deploy its funding incorrectly, potentially selling/buying at alarge loss to the protocol.
ImpactPool LP can be grossly under/over valued
Code SnippetAuraBalancerSupply.sol#L332-L369
Tool usedManual Review
RecommendationUse a try-catch block to always query getActualSupply on each pool to make suresupported pools use the correct metric.
Discussion0xJemThis is a valid issue and highlights problems with Balancer's documentation.We are likely to drop both the Balancer submodules from the final version, since weno longer have any Balancer pools used for POL and don't have any assets thatrequire price resolution via Balancer pools.

47

IssueM-7: Possible incorrect price for tokens inBalancerstable pool due to amplification parameter update
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/178
Found byhash
SummaryIncorrect price calculation of tokens in StablePools if amplification factor is beingupdated
Vulnerability DetailThe amplification parameter used to calculate the invariant can be in a state ofupdate. In such a case, the current amplification parameter can differ from theamplificaiton parameter at the time of the last invariant calculation. The currentimplementaiton of getTokenPriceFromStablePool doesn't consider this and alwaysuses the amplification factor obtained by calling getLastInvarianthttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L811-L827

function getTokenPriceFromStablePool(
address lookupToken_,
uint8 outputDecimals_,
bytes calldata params_

) external view returns (uint256) {

.....

try pool.getLastInvariant() returns (uint256, uint256 ampFactor) {

// @audit the amplification factor as of the last invariant
calculation is used,!

lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(
ampFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
1e18,
StableMath._calculateInvariant(ampFactor, balances_) //

Sometimes the fetched invariant value does not work, so calculate it,!

48

);

https://vscode.blockscan.com/ethereum/0x1e19cf2d73a72ef1332c882f20534b6519be0276 StablePool.sol
// @audit the amplification parameter can be updated
function startAmplificationParameterUpdate(uint256 rawEndValue, uint256
endTime) external authenticate {,!

// @audit for calculating the invariant the current amplification factor is
obtained by calling _getAmplificationParameter(),!

function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256[] memory balances,
uint256 indexIn,
uint256 indexOut

) internal virtual override whenNotPaused returns (uint256) {
(uint256 currentAmp,) = _getAmplificationParameter();
uint256 amountOut = StableMath._calcOutGivenIn(currentAmp, balances,
indexIn, indexOut, swapRequest.amount);,!

return amountOut;
}

ImpactIn case the amplification parameter of a pool is being updated by the admin, wrongprice will be calculated.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L811-L827
Tool usedManual Review
RecommendationUse the latest amplification factor by callling the getAmplificationParameterfunction

49

Discussion0xJemThis doesn't seem valid - if the amplification factor is changed since the invariantwas last calculated, wouldn't the value of the invariant also be invalid?nevillehuangHi @0xJem here is additional information provided by watson:The invariant used for calculating swap amounts in Balancer is always based on thelatest amplification factor hence their calculation would be latest. If there are nojoin actions, the cached amplification factor which is used by Olympus will notreflect the new one and will result in a different invariant and different token price.i am attaching a poc if required:https://gist.github.com/10xhash/8e24d0765ee98def8c6409c71a7d2b170xauditseaEscalateThis looks like invalid. Logically thinking, using getLastInvariant is more precisebecause the goal of this price feed is to calculate spot price of the balancer pool. Ifcurrent amplification factor is used, it doesn't represent current state of the pool.sherlock-admin2EscalateThis looks like invalid. Logically thinking, using getLastInvariant is moreprecise because the goal of this price feed is to calculate spot price ofthe balancer pool. If current amplification factor is used, it doesn'trepresent current state of the pool.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.Czar102@nevillehuang what do you think?nevillehuang@Czar102 I don't quite understand what @0xauditsea is pointing to. If you want tocalculate the latest spot price, shouldn't you use the latest factor as indicated bythe PoC by @10xhash?Czar102
50

@0xauditsea could you explain your reasoning in more detail?nevillehuang@10xhash does this affect ALL pools intended to be integrated during the time ofcontest?10xhashIt has to be clarified what intended to be integrated pools at the time of contestare:1. If only the list of tokens mentioned in the readme can be in a pool (asmentioned in previous replies this is not required per the contest definitionsince all tokens are not required to interact with contracts) : There are 0stable pools including normal, metastable etc. The only possible stable pool ofany type that can be used with the above restriction is the dai-sdaimetastable pool which has to be deployed in future.2. Else it must atleast include normal stable pools and according to balancer'sdocumentation {search startAmplificationParameterUpdate} and testing doneon the dai-usdc-usdt pool, it would be affectedCzar1021. Metastable pools are not supposed to be supported.2. This documentation seems to be for Avalanche, while the contracts will bedeployed on mainnet. I believe this functionality exists on mainnet too, right?Aside from that, the impact is that the price calculated is the price at the last poolupdate (trade) instead of the current price?10xhash2. The link opens up to Mainnet for me, if not you would have the option to selectthe chain on leftside. Yes.The impact would be that the amplification parameter used in the price calculationwill be that of the last join action (addliquidity , removeliquidity) which will bedifferent from the actual one used in the pool calculations. This will result in anincorrect price until some user performs a join operation.Czar102Adding/removing liquidity doesn't necessarily happen often. This, together with theamplification parameter change, is a very unlikely situation, nevertheless a possibleone.It's a borderline Med/Low, but I am inclined to keep this one a valid Medium. I don'tunderstand the point made in the escalation, and @0xauditsea hasn't elaboratedwhen asked for additional information.
51

gstoyanovbgIn determining the impact of this report, in my opinion, it should be assessed howmuch the price can change in the described circumstances and whether thechange is significant. I conducted a foundry test that shows the change in the priceof AURA_BAL at different values of the amplification factor. The test should beadded to BalancerPoolTokenPriceStable.t.sol.
function test_amp_factor_impact() public {

bytes memory params = encodeBalancerPoolParams(mockStablePool);
uint256 price;

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR + 2000);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 + 2000", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR + 10000);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 + 10000", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR * 2);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 * 2", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR * 4);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,

52

PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 * 4", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR * 10);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 * 10", price);

mockStablePool.setLastInvariant(INVARIANT, AMP_FACTOR * 100);
price = balancerSubmodule.getTokenPriceFromStablePool(

AURA_BAL,
PRICE_DECIMALS,
params

);
console.log("%d, AMP_FACTOR = 50000 * 100", price);

}

16602528871962134544, AMP_FACTOR = 5000016606565178508667081, AMP_FACTOR = 50000 + 200016620074517406602667, AMP_FACTOR = 50000 + 1000016655599693391809126, AMP_FACTOR = 50000 * 216682630482761745824, AMP_FACTOR = 50000 * 416699011129392628938, AMP_FACTOR = 50000 * 1016708898633935285195, AMP_FACTOR = 50000 * 100From the obtained results, it can be seen that the change in price is small. Even ifwe increase it 100 times to the maximum possible value of 5000 * 10ˆ3, the changein price is around 0.1 (0.63%). For such a large increase of the amplification factor, itwould take about 7 days (2x per day). Another question is what is the chance thatthere will be no join or exit within these 7 days.@Czar102 I don't know if this is significant enough change in the price for Sherlock,but wanted to share it to be sure it will be taken into consideration.Czar102@gstoyanovbg Thank you for the test, it looks like this should be a low severityissue.@10xhash Can you provide a scenario where the price would be altered by morethan 5%?10xhash
53

Place the test inside test/ and run forge test --mt testHash_AmplificationDiff5 Itis asserted that the diff in price is > 5% when the current amplification parameter isdivided by 6 with a 4 day period. Dividing by 6 would make the pool close to 8000(currently 50000).
pragma solidity 0.8.15;

import "forge-std/Test.sol";
import {IStablePool} from "src/libraries/Balancer/interfaces/IStablePool.sol";
import {IVault} from "src/libraries/Balancer/interfaces/IVault.sol";
import {FullMath} from "src/libraries/FullMath.sol";
import {StableMath} from "src/libraries/Balancer/math/StableMath.sol";
import {IVault} from "src/libraries/Balancer/interfaces/IVault.sol";
import {IBasePool} from "src/libraries/Balancer/interfaces/IBasePool.sol";
import {IWeightedPool} from

"src/libraries/Balancer/interfaces/IWeightedPool.sol";,!

import {IStablePool} from "src/libraries/Balancer/interfaces/IStablePool.sol";
import {VaultReentrancyLib} from

"src/libraries/Balancer/contracts/VaultReentrancyLib.sol";,!

import {LogExpMath} from "src/libraries/Balancer/math/LogExpMath.sol";
import {FixedPoint} from "src/libraries/Balancer/math/FixedPoint.sol";

interface IStablePoolWithAmp is IStablePool {
function getAmplificationParameter()

external
view
returns (uint amp, bool isUpdating, uint precision);

function startAmplificationParameterUpdate(uint256 rawEndValue, uint256
endTime) external;,!

}

interface IERC20 {
function approve(address spender,uint amount) external;

}

enum SwapKind { GIVEN_IN, GIVEN_OUT }

struct SingleSwap {
bytes32 poolId;
SwapKind kind;
address assetIn;
address assetOut;
uint256 amount;

54

bytes userData;
}

struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;

}

interface VaultWithSwap is IVault{
function swap(

SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline

) external payable returns (uint256);
}

contract PriceTest is Test {
using FullMath for uint256;

function testHash_AmplificationDiff5() public {
VaultWithSwap balVault =

VaultWithSwap(0xBA12222222228d8Ba445958a75a0704d566BF2C8);,!

IStablePoolWithAmp pool =
IStablePoolWithAmp(0x3dd0843A028C86e0b760b1A76929d1C5Ef93a2dd);,!

(, uint cachedAmpFactor) = pool.getLastInvariant();
{

(, bool isUpdating,) = pool.getAmplificationParameter();
assert(isUpdating == false);

}

console.log("cahced factor",cachedAmpFactor);

{
address mainnetFeeSetter = 0xf4A80929163C5179Ca042E1B292F5EFBBE3D89e6;

vm.startPrank(mainnetFeeSetter);
pool.startAmplificationParameterUpdate(cachedAmpFactor / 6 / 1e3,

block.timestamp + 4 days);,!

vm.warp(block.timestamp + 4 days + 100);

// perform swaps to update the balances with latest amp factor
{

55

(uint amp,bool isUpdating ,) = pool.getAmplificationParameter();
assert(isUpdating == false);

}

console.log("amp params set");
}

uint[] memory balances_;
uint actualAmpFactor;

{
bytes32 poolId = pool.getPoolId();

(actualAmpFactor, ,) = pool.getAmplificationParameter();

(, balances_,) = balVault.getPoolTokens(poolId);
uint256[] memory scalingFactors = pool.getScalingFactors();
{

uint256 len = scalingFactors.length;
for (uint256 i; i < len; ++i) {

balances_[i] = FixedPoint.mulDown(balances_[i],
scalingFactors[i]);,!

}
}

}

// lookup token auraBal and destination token lp token

uint oldCachedPrice;
uint newAmpFactorPrice;
{

uint destinationTokenIndex = 0;
uint lookupTokenIndex = 1;

console.log("calculation with previous amp factor");
uint lookupTokensPerDestinationToken;
lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(

cachedAmpFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
1e18,
StableMath._calculateInvariant(cachedAmpFactor, balances_)

);

// Downscale the amount to token decimals
uint256[] memory scalingFactors = pool.getScalingFactors();

lookupTokensPerDestinationToken = FixedPoint.divDown(

56

lookupTokensPerDestinationToken,
scalingFactors[lookupTokenIndex]

);

uint outputDecimals = 8;

lookupTokensPerDestinationToken =
(lookupTokensPerDestinationToken * 10 ** outputDecimals) /
1e18;

uint destinationTokenPrice = 1127000000;
console.log("bal lp price", destinationTokenPrice);
uint lookupTokenPrice;

lookupTokenPrice = destinationTokenPrice.mulDiv(
10 ** outputDecimals,
lookupTokensPerDestinationToken

);
oldCachedPrice = lookupTokenPrice;
console.log("aurabal price", lookupTokenPrice);

}

{
uint destinationTokenIndex = 0;

uint lookupTokenIndex = 1;
console.log("calculation with updated amp factor");
uint lookupTokensPerDestinationToken;
lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(

actualAmpFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
1e18,
StableMath._calculateInvariant(actualAmpFactor, balances_)

);

// Downscale the amount to token decimals
uint256[] memory scalingFactors = pool.getScalingFactors();

lookupTokensPerDestinationToken = FixedPoint.divDown(
lookupTokensPerDestinationToken,
scalingFactors[lookupTokenIndex]

);

uint outputDecimals = 8;

lookupTokensPerDestinationToken =
(lookupTokensPerDestinationToken * 10 ** outputDecimals) /

57

1e18;

uint destinationTokenPrice = 1127000000;
console.log("bal lp price", destinationTokenPrice);
uint lookupTokenPrice;

lookupTokenPrice = destinationTokenPrice.mulDiv(
10 ** outputDecimals,
lookupTokensPerDestinationToken

);
newAmpFactorPrice = lookupTokenPrice;
console.log("aurabal price", lookupTokenPrice);

}

assert((oldCachedPrice -newAmpFactorPrice) * 100 * 1e18 /
newAmpFactorPrice > 5 ether);,!

}

}

gstoyanovbg@10xhash well done, i think your test is valid and shows a significant price change.Czar102Thank you @10xhash! Planning to leave the issue as is.Czar102Result: Medium Uniquesherlock-admin2Escalations have been resolved successfully!Escalation status:• 0xauditsea: rejected

58

IssueM-8: Incorrect deviationcalculation in isDeviating-WithBpsCheck function
Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/193
Found byast3ros, coffiasd, dany.armstrong90, evilakela, hash
SummaryThe current implementation of the isDeviatingWithBpsCheck function in thecodebase leads to inaccurate deviation calculations, potentially allowing deviationsbeyond the specified limits.
Vulnerability DetailThe function isDeviatingWithBpsCheck checks if the deviation between two valuesexceeds a defined threshold. This function incorrectly calculates the deviation,considering only the deviation from the larger value to the smaller one, instead ofthe deviation from the mean (or TWAP).
function isDeviatingWithBpsCheck(

uint256 value0_,
uint256 value1_,
uint256 deviationBps_,
uint256 deviationMax_

) internal pure returns (bool) {
if (deviationBps_ > deviationMax_)

revert Deviation_InvalidDeviationBps(deviationBps_, deviationMax_);

return isDeviating(value0_, value1_, deviationBps_, deviationMax_);
}

function isDeviating(
uint256 value0_,
uint256 value1_,
uint256 deviationBps_,
uint256 deviationMax_

) internal pure returns (bool) {
return

(value0_ < value1_)
? _isDeviating(value1_, value0_, deviationBps_, deviationMax_)
: _isDeviating(value0_, value1_, deviationBps_, deviationMax_);

59

}

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/libraries/Deviation.sol#L23-L52The function then call _isDeviating to calculate how much the smaller value isdeviated from the bigger value.
function _isDeviating(

uint256 value0_,
uint256 value1_,
uint256 deviationBps_,
uint256 deviationMax_

) internal pure returns (bool) {
return ((value0_ - value1_) * deviationMax_) / value0_ > deviationBps_;

}

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/libraries/Deviation.sol#L63-L70The function isDeviatingWithBpsCheck is usually used to check how much thecurrent value is deviated from the TWAP value to make sure that the value is notmanipulated. Such as spot price and twap price in UniswapV3.
if (

// `isDeviatingWithBpsCheck()` will revert if `deviationBps` is invalid.
Deviation.isDeviatingWithBpsCheck(

baseInQuotePrice,
baseInQuoteTWAP,
params.maxDeviationBps,
DEVIATION_BASE

)
) {

revert UniswapV3_PriceMismatch(address(params.pool), baseInQuoteTWAP,
baseInQuotePrice);,!

}

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/modules/PRICE/submodules/feeds/UniswapV3Price.sol#L225-L235The issue is isDeviatingWithBpsCheck is not check the deviation of current value tothe TWAP but deviation from the bigger value to the smaller value. This leads to anincorrect allowance range for the price, permitting deviations that exceed theacceptable threshold.Example:
60

TWAP price: 1000 Allow deviation: 10%.The correct deviation calculation will use deviation from the mean. The allow pricewill be from 900 to 1100 since:• |1100 - 1000| / 1000 = 10%• |900 - 1000| / 1000 = 10%However the current calculation will allow the price from 900 to 1111• (1111 - 1000) / 1111 = 10%• (1000 - 900) / 1000 = 10%Even though the actual deviation of 1111 to 1000 is |1111 - 1000| / 1000 = 11.11% >10%
ImpactThis miscalculation allows for greater deviations than intended, increasing thevulnerability to price manipulation and inaccuracies in Oracle price reporting.
Code Snippethttps://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/libraries/Deviation.sol#L63-L70
Tool usedManual review
RecommendationTo accurately measure deviation, the isDeviating function should be revised tocalculate the deviation based on the mean value: | spot value - twap value | /
twap value.
Discussion0xrusowskyhttps://github.com/OlympusDAO/bophades/pull/245IAm0x52EscalateThis is purely a design choice. Nothing here is wrong with the implementation. Thedeviation is purely subjective and is measured objectively the same in both

61

directions. This should be a low severity issue in my opinion and I strongly believe itshould be. At the maximum this should be a medium severity issues as impact isnot large at all for any reasonable variation and only subjectively incorrectsherlock-admin2EscalateThis is purely a design choice. Nothing here is wrong with theimplementation. The deviation is purely subjective and is measuredobjectively the same in both directions. This should be a low severityissue in my opinion and I strongly believe it should be. At the maximumthis should be a medium severity issues as impact is not large at all forany reasonable variation and only subjectively incorrectYou've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.nevillehuang@IAm0x52 I'm pretty sure sponsor acknowledging this with a fix indicates this isnot a design choice. Let me know if there are any publicly available information attime of contests that points to that that I am missing.Since price values are CORE components of price modules, I labelled it as high asthe returned price should never be allowed to have too significant of a deviation ifnot every use case of this prices will be impacted. I think #3 highlights the possibleimpact of this issues well, and as such this issues should have a minimum ofmedium severity if not high.IAm0x52This is only used in the BUNNI library which is full range liquidity. This simply usedto ensure that reserves have not been manipulated and is not the price being used.Using the example provided at a 10% deviation. Reserves can be ~1% differentbetween methodologies.Let's do a small bit of math to figure this. Assume current invariant is 10000 andthere should be 100 of each token (100 * 100 = 10000). If each token is worth $1then the true value of the pool is 200 (1 * 100 + 1 * 100) Assume price has beenmanipulated up 10% so now the pool has 110 and 90.9 (10000 / 110) so the value ofthe pool is now 200.9 (110 * 1 + 90.9 * 1). Lets move it 1.111% more to 11.111% thismeans there is 111.1111 and 90 (10000 / 111.111) so the value of the pool is now201.111 (111.111 * 1 + 90 * 1). This results in a difference of 0.211 on a value of 200.9or 0.1%. This is entirely negligible and hence why I say the deviation check order isa design choice and either way is negligible.
62

nevillehuang@IAm0x52 Agree with your analysis, but on context that core contract functionalityof deviation check is broken, suggest to keep medium severity.IAm0x52Fix looks good. Benchmark is now always the middle for comparisonCzar102I agree that calculating deviation in log is a valid design choice. Nevertheless, Ithink it was clear from the comments in code that the deviation was supposed tobe calculated symmetrically and linearly, I acknowledge the limitations of this bugas well.Hence, planning to consider this a medium severity issue.Czar102Result: Medium Has duplicatessherlock-admin2Escalations have been resolved successfully!Escalation status:• IAm0x52: accepted

63

Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

64

