SHERLOCK SECURITY REVIEW FOR

Prepared for: Olympus

Prepared by: Sherlock

Lead Security Expert: 0Ox52

Dates Audited: December 5 - December 26, 2023
Prepared on: January 29, 2024

Olympus is building OHM, a community-owned, decentralized and
censorship-resistant reserve currency that is asset-backed, deeply liquid and used
widely across Web3.

Repository: OlympusDAO/bophades
Branch: rbs-v2
Commit: e0Ob5cd259d7a84db3a329dab3932ec8664ae1323

For the detailed scope, see the contest details.

Each issue has an assigned severity:

* Medium issues are security vulnerabilities that may not be directly exploitable
or may require certain conditions in order to be exploited. All major issues
should be addressed.

e High issues are directly exploitable security vulnerabilities that need to be
fixed.

Medium

8 4
Medium

0 0

. @/ SHERLOCK

hash

tvdung94
dany.armstrong90

nobody2018
nirohgo
KupiaSec
geba

jasonxiale
ast3ros

Arabadzhiev

rvierdiiev
Drynooo
Bauer
bin2chen
lemonmon
coffiasd
evilakela
lil.eth

CLOO1
OxMRO
custOmPe0
shealtielanz
AuditorPraise
jovi
ZanyBonzy
0x52

'/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/55

Found by
dany.armstrong90, nirohgo, nobody2018

Summary

The moving average prices should be calculated by only oracle feed prices. But
now, they are calculated by not only oracle feed prices but also moving average
price recursively.

That is, the storePrice function uses the current price obtained from the
_getCurrentPrice function to update the moving average price. However, in the
case of asset.useMovingAverage = true, the _getCurrentPrice function computes
the current price using the moving average price.

Thus, the moving average prices are used recursively to calculate moving average
price, so the current prices will be obtained incorrectly.

Vulnerability Detail

OlympusPrice.v2.sol#storePrice function is the following.

function storePrice(address asset_) public override permissioned {
Asset storage asset = _assetDatalasset_];

// Check if asset is approved
if (!asset.approved) revert PRICE_AssetNotApproved(asset_);

// Get the current price for the asset
319: (uint256 price, uint48 currentTime) = _getCurrentPrice(asset_);

// Store the data in the obs index
uint256 oldestPrice = asset.obs[asset.nextObsIndex];
asset.obs[asset.nextObsIndex] = price;

// Update the last observation time and increment the next index
asset.last0ObservationTime = currentTime;
asset.nextObsIndex = (asset.nextObsIndex + 1) 7 asset.numObservations;

3 @/ SHERLOCK

// Update the cumulative observation, if storing the moving average
if (asset.storeMovingAverage)
331: asset.cumulativeObs = asset.cumulativeObs + price - oldestPrice;

// Emit event
emit PriceStored(asset_, price, currentTime);

L319 obtain the current price for the asset by calling the _getCurrentPrice function
and use it to update asset.cumulativeObs in L331. The _getCurrentPrice function is
the following.

function _getCurrentPrice(address asset_) internal view returns (uint256,
< uint48) {
Asset storage asset = _assetDatalasset_];

// Iterate through feeds to get prices to aggregate with strategy
Component [] memory feeds = abi.decode(asset.feeds, (Component[]));
uint256 numFeeds = feeds.length;
138: uint256[] memory prices = asset.useMovingAverage
7 new uint256[] (numFeeds + 1)
: new uint256[] (numFeeds) ;
uint8 _decimals = decimals; // cache in memory to save gas
for (uint256 i; i < numFeeds;) {
(bool success_, bytes memory data_) =
— address(_getSubmoduleIfInstalled(feeds[i].target))
.staticcall(
abi.encodeWithSelector (feeds[i] .selector, asset_, _decimals,
— feeds[i] .params)

)

// Store price if successful, otherwise leave as zero

// Idea is that if you have several price calls and just
// one fails, it'll DOS the contract with this revert.
// We handle faulty feeds in the strategy contract.

if (success_) prices[i] = abi.decode(data_, (uint256));

unchecked {
i

>

// If moving average is used in strategy, add to end of prices array
160: if (asset.useMovingAverage) prices[numFeeds] = asset.cumulativeObs /
— asset.numObservations;

a @/ SHERLOCK

// If there is only one price, ensure it is not zero and return
// Otherwise, send to strategy to aggregate
if (prices.length == 1) {
if (prices[0] == 0) revert PRICE_PriceZero(asset_);
return (prices[0], uint48(block.timestamp));
} else {
// Get price from strategy
Component memory strategy = abi.decode(asset.strategy, (Component));
(bool success, bytes memory data) =
— address(_getSubmoduleIfInstalled(strategy.target))
.staticcall(abi.encodeWithSelector (strategy.selector, prices,
— strategy.params));

// Ensure call was successful
if (!success) revert PRICE_StrategyFailed(asset_, data);

// Decode asset price
uint256 price = abi.decode(data, (uint256));

// Ensure value is not zero
if (price == 0) revert PRICE_PriceZero(asset_);

return (price, uint48(block.timestamp));

As can be seen, when asset.useMovingAverage = true, the _getCurrentPrice
calculates the current price price using the moving average price obtained by
asset.cumulativeObs / asset.numObservations in L160.

So the price value in L331 is obtained from not only oracle feed prices but also
moving average price. Then, storePrice calculates the cumulative observations
asset.cumulativeObs = asset.cumulativeObs + price - oldestPrice using the
price Which is obtained incorrectly above.

Thus, the moving average prices are used recursively for the calculation of the
moving average price.

Impact

Now the moving average prices are used recursively for the calculation of the
moving average price. Then, the moving average prices become more smoothed
than the intention of the administrator. That is, even when the actual price
fluctuations are large, the price fluctuations of _getCurrentPrice function will
become too small.

Moreover, even though all of the oracle price feeds fails, the moving averge prices

c @/ SHERLOCK

will be calculated only by moving average prices.

Thus the current prices will become incorrect. If _getCurrentPrice function value is
miscalculated, it will cause fatal damage to the protocol.

Code Snippet
https://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/boph

ades/src/modules/PRICE/OlympusPrice.v2.sol#L312-L335
https://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/boph

ades/src/modules/PRICE/OlympusPrice.v2.sol#L132-L184

Tool used

\YERTEIRRGEVIEY

Recommendation

When updating the current price and cumulative observations in the storePrice
function, it should use the oracle price feeds and not include the moving average
prices. So, instead of using the asset.useMovingAverage state variable in the
_getCurrentPrice function, we can add a useMovingAverage parameter as the
following.

>> function _getCurrentPrice(address asset_, bool useMovingAverage) internal
« view returns (uint256, uint48) {
Asset storage asset = _assetDatalasset_];

// Iterate through feeds to get prices to aggregate with strategy
Component [] memory feeds = abi.decode(asset.feeds, (Component[]));
uint256 numFeeds = feeds.length;
>> uint256 [] memory prices = useMovingAverage
? new uint256[] (numFeeds + 1)
: new uint256[] (numFeeds) ;
uint8 _decimals = decimals; // cache in memory to save gas
for (uint256 i; i < numFeeds;) {
(bool success_, bytes memory data_) =
— address(_getSubmoduleIfInstalled(feeds[i] .target))
.staticcall(
abi.encodeWithSelector (feeds[i] .selector, asset_, _decimals,
— feeds[i] .params)

)
// Store price if successful, otherwise leave as zero

// Idea is that if you have several price calls and just
// one fails, it'll DOS the contract with this revert.

5 @/ SHERLOCK

// We handle faulty feeds in the strategy contract.
if (success_) prices[i] = abi.decode(data_, (uint256));

unchecked {
i

>

// If moving average is used in strategy, add to end of prices array
>> if (useMovingAverage) prices[numFeeds] = asset.cumulativeObs /
— asset.numObservations;

// If there is only one price, ensure it is not zero and return
// Otherwise, send to strategy to aggregate
if (prices.length == 1) {

if (prices[0] == 0) revert PRICE_PriceZero(asset_);
return (prices[0], uint48(block.timestamp));
} else {

// Get price from strategy
Component memory strategy = abi.decode(asset.strategy, (Component));
(bool success, bytes memory data) =
— address(_getSubmoduleIfInstalled(strategy.target))
.staticcall(abi.encodeWithSelector (strategy.selector, prices,
— strategy.params));

// Ensure call was successful
if (!success) revert PRICE StrategyFailed(asset_, data);

// Decode asset price
uint256 price = abi.decode(data, (uint256));

// Ensure value is not zero
if (price == 0) revert PRICE_PriceZero(asset_);

return (price, uint48(block.timestamp));

Then we should set useMovingAverage = false to call _getCurrentPrice function
only in the storePrice function. In other cases, we should set useMovingAverage
asset.useMovingAverage 10 call _getCurrentPrice function.

Discussion

Oxrusowsky

. @/ SHERLOCK

https://github.com/OlympusDAO/bophades/pull/257

IAmMOx52

Fix looks good. The moving average is no longer included when storing price

8 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/172

Found by
hash, tvdung94

Summary

ProtocolOwnedLiquidityOhm for Bunni can include the liquidity deposited by other
users which is not protocol owned

Vulnerability Detail

The protocol owned liquidity in Bunni is calculated as the sum of reserves of all the
BunniTokens

function getProtocolOwnedLiquidityOhm() external view override returns (uint256)

o {

uint256 len = bunniTokens.length;

uint256 total;

for (uint256 i; i < len;) {
TokenData storage tokenData = bunniTokens[i];
Bunnilens lens = tokenData.lens;
BunniKey memory key = _getBunniKey(tokenData.token) ;

total += _getOhmReserves(key, lens);
unchecked {
++5:

>

}

return total;

The deposit function of Bunni allows any user to add liquidity to a token. Hence the
returned reserve will contain amounts other than the reserves that actually belong
to the protocol

S @/ SHERLOCK

// Qaudit callable by any user
function deposit(

DepositParams calldata params
)

external

payable

virtual

override

checkDeadline (params.deadline)

returns (uint256 shares, uint128 addedLiquidity, uint256 amountO, uint256
— amountl)

Impact

Incorrect assumption of the protocol owned liquidity and hence the supply. An
attacker can inflate the liquidity reserves The wider system relies on the supply
calculation to be correct in order to perform actions of economical impact

https://discord.com/channels/812037309376495636/1184355501258047488/118439790455 |
— 1628831

it will be determined to get backing

so it will have an economical impact, as we could be exchanging ohm for treasury
— assets at a wrong price

Code Snippet

POL liquidity is calculated as the sum of bunni token reserves https://github.com/sh

erlock-audit/2023-11-olympus/blob/9c8df76dc9820b4c6605d2e1e6d87dcfa9e50
070/bophades/src/modules/SPPLY/submodules/BunniSupply.sol#L171-L191

BunniHub allows any user to deposit
https://github.com/sherlock-audit/2023-11-olympus/blob/9¢c8df76dc9820b4c6605
d2e1e6d87dcfa9e50070/bophades/src/external/bunni/BunniHub.sol#L71-L106

Tool used

Manual Review

10 @/ SHERLOCK

Recommendation

Guard the deposit function in BunniHub or compute the liquidity using shares
belonging to the protocol

Discussion

OxJem

This is a good catch, and the high level is justified
Oxrusowsky
https://github.com/OlympusDAO/bophades/pull/260
IAmOx52

Fix looks good. OnlyOwner modifier has been added to deposits

T @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/176

Found by

Bauer, ast3ros, ge6a, hash, jasonxiale, tvdung94

Summary

Incorrect StablePool BPT price calculation as rate's are not considered

Vulnerability Detail

The price of a stable pool BPT is computed as:

minimum price among the pool tokens obtained via feeds * return value
of getRate()

This method is used referring to an old documentation of Balancer

function getStablePoolTokenPrice(

address,

uint8 outputDecimals_,

bytes calldata params_
) external view returns (uint256) {

// Prevent overflow

if (outputDecimals_ > BASE_10_MAX_EXPONENT)

revert Balancer_QOutputDecimalsOutOfBounds (outputDecimals_,

— BASE_10_MAX_EXPONENT) ;

address[] memory tokens;

uint256 poolRate; // pool decimals
uint8 poolDecimals;

bytes32 poolld;

// Get tokens in the pool from vault
(address[] memory tokens_, ,) = balVault.getPoolTokens (poollId) ;
tokens = tokens_;

// Get rate
try pool.getRate() returns (uint256 rate_) {
if (rate_ == 0) {

7 @/ SHERLOCK

revert Balancer_PoolStableRateInvalid(poolId, 0);

poolRate = rate_;

uint256 minimumPrice; // outputDecimals_
{
/*x
* The Balancer docs do not currently state this, but a historical
— version noted
* that getRate() should be multiplied by the minimum price of the
— tokens in the
* pool in order to get a valuation. This is the same approach as used
— by Curve stable pools.
*/
for (uint256 i; i < len; i++) {
address token = tokens[i];
if (token == address(0)) revert Balancer_PoolTokenInvalid(poolld, i,
— token);

(uint256 price_,) = _PRICE().getPrice(token,
— PRICEv2.Variant.CURRENT); // outputDecimals_

if (minimumPrice == 0) {
minimumPrice = price_;

} else if (price_ < minimumPrice) {
minimumPrice = price_;

}

uint256 poolValue = poolRate.mulDiv(minimumPrice, 10 ** poolDecimals); //
— outputDecimals_

The getRate () function returns the exchange rate of a BPT to the underlying base
asset of the pool which can be different from the minimum market priced asset for
pools with rateProviders. To consider this, the price obtained from feeds must be
divided by the rate provided by rateProviders before choosing the minimum as
mentioned in the previous version of Balancer's documentation.

https://github.com/balancer/docs/blob/663e2f4f2c3eee6f85805€102434629633a

f92a2/docs/concepts/advanced/valuing-bpt/bpt-as-collateral.md#metastablepool

13 @/ SHERLOCK

s-eg-wsteth-weth

1. Get market price for each constituent token Get market price of wstETH and
WETH in terms of USD, using chainlink oracles.

2. Get RateProvider price for each constituent token Since wstETH - WETH pool
is a MetaStablePool and not a ComposableStablePool, it does not have
getTokenRate () function. Therefore, it's needed to get the RateProvider price
manually for wstETH, using the rate providers of the pool. The rate provider will
return the wstETH token in terms of stETH.

Note that WETH does not have a rate provider for this pool. In that case, assume a
value of 1e18 (it means, market price of WETH won't be divided by any value, and
it's used purely in the minPrice formula).

3. Get minimum price

MystETH

Prp

wstETH

minPrice = min(s Py i)

4. Calculates the BPT price

= nunPrice * rateyge

PBPTwstE‘TH—WETH wstETH—WETH

where rate_pool_wstETH-WETH iS pool.getRate () of wstETH-WETH pool.

The wstEth-cbEth pool is a MetaStablePool having rate providers for both tokens
since neither of them is the base token https://app.balancer.fi/#/ethereum/pool/0x
9c6d47ff73e0f5e51be5fd53236e3f595¢5793f200020000000000000000042¢

At block 18821323: cbeth : 2317.48812 wstEth : 2526.84 pool total supply :
0.273259897168240633 getRate() : 1.022627523581711856 wstRateprovider rate :
1150725009180224306 cbEthRateProvider rate : 1.058783029570983377 wstEth
balance : 0.133842314907166538 cbeth balance : 0.119822100236557012 tvl :
(0.133842314907166538 * 2526.84 + 0.119822100236557012 * 2317.48812) ==
615.884408812

according to current implementation: bpt price = 2317.48812 *
1.022627523581711856 == 2369.927137086 calculated tvl = bpt price * total
supply = 647.606045776

correct calculation: rate_provided_adjusted_cbeth = (2317.48812 /
1.058783029570983377) == 2188.822502132 rate_provided_adjusted_wsteth =
(2526.84 / 1150725009180224306) == 2195.867804942 bpt price =

0 @/ SHERLOCK

2188.822502132 * 1.022627523581711856 == 2238.350134915 calculated tvl = bpt
price * total supply = (2238.350134915 * 0.273259897168240633) ==
611.651327693

Impact

Incorrect calculation of bpt price. Has possibility to be over and under valued.

Code Snippet

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L514-L539

Tool used

\YERTEIRRGEVIEY

Recommendation

For pools having rate providers, divide prices by rate before choosing the minimum

Discussion
OxJem
This is a valid issue and highlights problems with Balancer's documentation.

We are likely to drop both the Balancer submodules from the final version, since we
no longer have any Balancer pools used for POL and don't have any assets that
require price resolution via Balancer pools.

sherlock-admin2
Escalate

This is invalid. Never meant to interact with composable stable pools as
shown by this comment here where they explicitly state it will revert if it
is a composable stable pool:

https://github.com/sherlock-audit/2023-11-olympus/blob/9¢c8df76dc982
Ob4c6605d2e1e6d87dcfa9e50070/bophades/src/modules/PRICE/subm
odules/feeds/BalancerPoolTokenPrice.sol#L441-L444

You've deleted an escalation for this issue.

15 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/198

Found by

Arabadzhiev, Drynooo, ge6a, hash, jasonxiale, tvdung94

Summary

The function getBunniTokenPrice() is supposed to return the price of 1 Bunni token
(1 share) like all other feeds, but it doesn't. It returns the total price of all minted
tokens/shares for a specific pool (total value of position's reserves) which is wrong.

Vulnerability Detail

This happens because the totalValue on line 163 is not devided by the total tokens
supply.

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BunniPrice.sol#L110-L166

Impact

The function getBunniTokenPrice always returns wrong price. This would impact
the operation of the RBS module. For instance, using the wrong price during a swap
may lead to financial losses for the protocol.

Code Snippet

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BunniPrice.sol#L110-L166

Tool used

\YERTEIRRGEVIEY

Recommendation
Devide totalValue by the total tokens supply.

16 @/ SHERLOCK

Discussion

Oxrusowsky
https://github.com/OlympusDAO/bophades/pull/244
IAmOx52

Fix looks good. Token price is now normalized to get price per token.

- @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/37

Found by

dany.armstrong90, rvierdiiev, tvdung94

Summary

BunniPrice.getBunniTokenPrice doesn't include fees into calculation, which means
that price will be smaller.

Vulnerability Detail

BunniPrice.getBunniTokenPrice function should return usd cost of bunniToken_.
After initial checks this function actually do 2 things:

o validate deviation
e calculates total cost of token

Let's check how it's done to calculate total cost of token. It's done
using _getTotalValue function.

So we get token reserves using _getBunniReserves function and the convert them
to usd value and return the sum. _getBunniReserves in it's turn just
fetches amount of tokenO and token1 that can be received in case if you swap all

bunni token liquidity right now in the pool.

The problem is that this function doesn't include fees that are earned by the
position. As result total cost of bunni token is smaller than in reality. The difference
depends on the amount of fees there were earned and not returned back.

Also when you do burn in the uniswap v3, then amount of token0O/token1 is not send
back to the caller, but they are added to the position and can be collected later. So
in case if BunniPrice.getBunniTokenPrice Will be called for the token, where some
liquidity is burnt but not collected, then difference in real token price can be huge.
Impact

Price for the bunni token can be calculated in wrong way.

18 @/ SHERLOCK

Code Snippet

Provided above

Tool used

\YERTEIRREVIEY

Recommendation

Include collected amounts and additionally earned fees to the position reserves.

Discussion

sherlock-admin2
1 comment(s) were left on this issue during the judging contest.
hirohgo commented:
duplicate of 137
OxJem

IMO this is medium or low severity - the fees will be compounded regularly, and so
aren't going to increasing to a significant amount.

nevillehuang

Hi @0xJem, since this could occur naturally without any external factors, | think it
could constitute high severity given important price values could be directly
affected.

Does the following mean uncollected fees are going to be collected by olympus
regularly?

the fees will be compounded regularly
OxJem

Hi @0xJem, since this could occur naturally without any external factors,
| think it could constitute high severity given important price values could
be directly affected.

Does the following mean uncollected fees are going to be collected by
olympus regularly?

the fees will be compounded regularly

Yes we will have a keeper function calling the harvest() function on BunniManager.
It can be called maximum once in 24 hours.

19 @/ SHERLOCK

Oxrusowsky
https://github.com/OlympusDAO/bophades/pull/244

IAmOx52
Escalate

This is simply another occurrence of #49 in a different location and should be
grouped with it

sherlock-admin2
Escalate

This is simply another occurrence of #49 in a different location and
should be grouped with it

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

Agree with @IAmOx52 , root cause is the same although with different impact, can
be duplicated.

Arabadzhiew

This issue and its duplicates refer to an issue in the BunniPrice contract, while
issue #49 and its duplicates refer to an issue that is inside of the BunniSupply
contract. The root causes are clearly not the same, so | believe those two issues
should stay separated in 2 different families.

OxJem

IMO it is separate. 49 refers to the TWAP and reserves check, whereas this is
valuing the LP position.

IAmOx52
Fix looks good. Fees are now also accounted for here as well.
Czar102

@IAMOx52 could you take another look and let me know if you agree with the
above comments?

nevillehuang

@Czar102 | think there was a separate fix with the 246 pull request for issue #49,
so could indicate that they are not duplicates

20 @/ SHERLOCK

Czar102
Result: Medium Has duplicates

Escalation's author hasn't provided enough information to justify a change in status
of the issue.

sherlock-admin2
Escalations have been resolved successfully!
Escalation status:

o |IAMOx52: rejected

o @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/49

Found by

Arabadzhiev, KupiaSec, dany.armstrong90, hash, lil.eth, rvierdiiev

Summary

The deviation check (_validateReserves()) from BunniPrice.sol considers both
position reserves and uncollected fees when validating the deviation with TWAP,
while the final price calculation (_getTotalValue()) only accounts for position
reserves, excluding uncollected fees.

The same is applied to BunniSupply.sol where getProtocolOwnedLiquidityQhm()
validates reserves + fee deviation from TWAP and then returns only Ohm reserves
using lens_.getReserves (key_)

Note that BunniSupply.sol#getProtocolOwnedLiquidityReserves() validates
deviation using reserves+fees with TWAP and then return reserves+fees in a good
way without discrepancy.

But this could lead to a misalignment between the deviation check and actual price
computation.

Vulnerability Detail

1. Deviation Check : _validateReserves Function:

BunniPrice.sol and BunniSupply.sol :
function _validateReserves(BunniKey memory key_,Bunnilens lens_,uint16
<~ twapMaxDeviationBps_,uint32 twapObservationWindow_) internal view
{
uint256 reservesTokenRatio = BunniHelper.getReservesRatio(key_, lens_);
uint256 twapTokenRatio = UniswapV3OracleHelper.getTWAPRatio(address(key_
< .pool) ,twapObservationWindow_) ;

// Revert if the relative deviation is greater than the maximum.
if (
// ~isDeviatingWithBpsCheck() ™ will revert if “deviationBps™ is
— invalid.
Deviation.isDeviatingWithBpsCheck(
reservesTokenRatio,
twapTokenRatio,

o5 @/ SHERLOCK

###

HH#H#

twapMaxDeviationBps_,
TWAP_MAX_DEVIATION_BASE

) o
revert BunniPrice_PriceMismatch(address(key_.pool), twapTokenRatio,
reservesTokenRatio) ;

}

BunniHelper.sol :
function getReservesRatio(BunniKey memory key_, Bunnilens lens_) public view
returns (uint256) {

IUniswapV3Pool pool = key_.pool;

uint8 tokenODecimals = ERC20(pool.token0()).decimals() ;

(uint112 reserve0, uint112 reservel) = lens_.getReserves(key_);

//E compute fees and return values
(uint256 feeO, uint256 feel) = lens_.getUncollectedFees(key_);

//E calculates ratio of tokenl in tokenO
return (reservel + feel) .mulDiv(10 ** tokenODecimals, reserveO + feeO);

UniswapV30racleHelper.sol :
//E Returns the ratio of tokenl to tokenO in tokenl decimals based on the
TWAP
//E used in bophades/src/modules/PRICE/submodules/feeds/BunniPrice.sol,
and SPPLY/submodules/BunniSupply.sol
function getTWAPRatio(
address pool_,
uint32 period_ //E period of the TWAP in seconds
) public view returns (uint256)
{
//E return the time-weighted tick from period_ to now
int56 timeWeightedTick = getTimeWeightedTick(pool_, period_);

IUniswapV3Pool pool = IUniswapV3Pool(pool_);
ERC20 tokenO = ERC20(pool.token0());
ERC20 tokenl = ERC20(pool.tokenl());

// Quantity of tokenl for 1 unit of tokenO at the time-weighted tick

// Scale: tokenl decimals

uint256 baseInQuote = OracleLibrary.getQuoteAtTick(
int24 (timeWeightedTick),
uint128(10 ** tokenO.decimals()), // 1 unit of tokenO => baseAmount
address (tokenO) ,

23 @/ SHERLOCK

address (tokenl)
);

return baseInQuote;

You can see that the deviation check includes uncollected fees in the
reservesTokenRatio, potentially leading to a higher or more volatile ratio compared
to the historical twapTokenRatio.

2. Final Price Calculation in BunniPrice.sol#_getTotalValue() :

function _getTotalValue(
BunniToken token_,
Bunnilens lens_,
uint8 outputDecimals_
) internal view returns (uint256) {
(address tokenO, uint256 reserveO, address tokenl, uint256 reservel) =
— _getBunniReserves(
token_,
lens_,
outputDecimals_
);
uint256 outputScale = 10 ** outputDecimals_;

// Determine the value of each reserve token in USD

uint256 totalValue;

totalValue += _PRICE() .getPrice(tokenO) .mulDiv(reserveO, outputScale);
totalValue += _PRICE().getPrice(tokenl) .mulDiv(reservel, outputScale);

return totalValue;

You can see that this function (_getTotalValue()) excludes uncollected fees in the
final valuation, potentially overestimating the total value within deviation check
process, meaning the check could pass in certain conditions whereas it could have
not pass if fees where not accounted on the deviation check. Moreover the below
formula used :

pricerp = reserveg X pricey + reserve; X price;

where reserve; is token i reserve amount, price; is the price of token i

In short, it is calculated by getting all underlying balances, multiplying those by
their market prices

However, this approach of directly computing the price of LP tokens via spot

i @/ SHERLOCK

reserves is well-known to be vulnerable to manipulation, even if TWAP Deviation is
checked, the above summary proved that this method is not 100% bullet proof as

there are discrepancy on what is mesured. Taken into the fact that the process to
check deviation is not that good plus the fact that methodology used to compute

price is bad, the impact of this is high

4. The same can be found in BunnySupply.sol
getProtocolOwnedLiquidityReserves() :

function getProtocolOwnedLiquidityReserves()
external
view
override
returns (SPPLYv1.Reserves[] memory)

// Iterate through tokens and total up the reserves of each pool
uint256 len = bunniTokens.length;
SPPLYv1.Reserves[] memory reserves = new SPPLYvl.Reserves[] (len);
for (uint256 i; i < len;) {
TokenData storage tokenData = bunniTokens[i];
BunniToken token = tokenData.token;
Bunnilens lens = tokenData.lens;
BunniKey memory key = _getBunniKey(token) ;
(
address tokenO,
address tokenl,
uint256 reserveO,
uint256 reservel
) = _getReservesWithFees(key, lens);

// Validate reserves
_validateReserves(
key,
lens,
tokenData.twapMaxDeviationBps,
tokenData.twapObservationWindow

)

address[] memory underlyingTokens = new address[](2);
underlyingTokens[0] = tokenO;

underlyingTokens[1] = tokenl;

uint256[] memory underlyingReserves = new uint256[] (2);
underlyingReserves[0] = reserveO;

underlyingReserves[1]

reservel;

reserves[i] = SPPLYv1.Reserves ({
source: address(token),

95 @/ SHERLOCK

tokens: underlyingTokens,
balances: underlyingReserves

s

unchecked {
41

>

}
}

return reserves;

Where returned value does not account for uncollected fees whereas deviation
check was accounting for it

Impact

_getTotalValue () from BunniPrice.sol and getProtocolOwnedLiquidityReserves()
from BunniSupply.sol have both ratio computation that includes uncollected fees to
compare with TWAP ratio, potentially overestimating the total value compared to
what these functions are aim to, which is returning only the reserves or LP Prices
by only taking into account the reserves of the pool. Meaning the check could pass
in certain conditions where fees are included in the ratio computation and the
deviation check process whereas the deviation check should not have pass without
the fees accounted.

Code Snippet

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/SPPLY/submodules/BunniSupply.sol#L212-L260
https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BunniPrice.sol#L110

Tool used

Manual Review

Recommendation

Align the methodology used in both the deviation check and the final price
computation. This could involve either including the uncollected fees in both
calculations or excluding them in both.

It's ok for BunniSupply as there are 2 functions handling both reserves and
reserves+fees but change deviation check process on the second one to include

26 @/ SHERLOCK

only reserves when checking deviation twap ratio

Discussion

sherlock-admin2
1 comment(s) were left on this issue during the judging contest.
nirohgo commented:

True observation but the effect on deviation is miniscule and no viable
scenario has been shown that leads to a loss of material amounts.

OxJem

Accurate that uncollected fees are excluded from the TWAP check but included in
the reserves check, which could lead to inconsistencies. This has been made
consistent now.

this approach of directly computing the price of LP tokens via spot
reserves is well-known to be vulnerable to manipulation

We are aware, hence the reserves & TWAP check, plus re-entrancy check.
Oxrusowsky
https://github.com/OlympusDAO/bophades/pull/244

https://github.com/OlympusDAQO/bophades/pull/246

IAMmOx52

Fix looks good. Fees are now included in determining bunni token price. Fees are
now not considered in BunniHelper#getFullRangeBunniKey

o7 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/56

Found by

dany.armstrong90

Summary

In SimplePriceFeedStrategy.sol#getMedianPrice function, when the length of
nonZeroPrices is 2 and they are deviated it returns first non-zero value, not median
value.

Vulnerability Detail

SimplePriceFeedStrategy.sol#getMedianPriceIfDeviation is as follows.

function getMedianPriceIfDeviation(
uint256[] memory prices_,
bytes memory params_
) public pure returns (uint256) {
// Misconfiguration
if (prices_.length < 3) revert
— SimpleStrategy_PriceCountInvalid(prices_.length, 3);

237 uint256 [] memory nonZeroPrices = _getNonZeroArray(prices_);

// Return 0 if all prices are O
if (nonZeroPrices.length == 0) return O0;

// Cache first non-zero price since the array is sorted in place
uint256 firstNonZeroPrice = nonZeroPrices[0];

// If there are not enough non-zero prices to calculate a median, return
— the first non-zero price
246 if (nonZeroPrices.length < 3) return firstNonZeroPrice;

uint256[] memory sortedPrices = nonZeroPrices.sort();

// Get the average and median and abort if there's a problem
// The following two values are guaranteed to not be O since
— sortedPrices only contains non-zero values and has a length of 3+
uint256 averagePrice = _getAveragePrice(sortedPrices);
253 uint256 medianPrice = _getMedianPrice(sortedPrices);

28 @/ SHERLOCK

if (params_.length != DEVIATION_PARAMS_LENGTH) revert
< SimpleStrategy_ParamsInvalid(params_);
uint256 deviationBps = abi.decode(params_, (uint256));
if (deviationBps <= DEVIATION_MIN || deviationBps >= DEVIATION_MAX)
revert SimpleStrategy_ParamsInvalid(params_);

// Check the deviation of the minimum from the average

uint256 minPrice = sortedPrices[0];
262 if (((averagePrice - minPrice) * 10000) / averagePrice > deviationBps)
— return medianPrice;

// Check the deviation of the maximum from the average

uint256 maxPrice = sortedPrices[sortedPrices.length - 1];
266 if (((maxPrice - averagePrice) * 10000) / averagePrice > deviationBps)
— return medianPrice;

// Otherwise, return the first non-zero value
return firstNonZeroPrice;

As you can see above, on L237 it gets the list of non-zero prices. If the length of
this list is smaller than 3, it assumes that a median price cannot be calculated and
returns first non-zero price. This is wrong. If the number of non-zero prices is 2 and
they are deviated, it has to return median value. The _getMedianPrice function
called on L253 is as follows.

function _getMedianPrice(uint256[] memory prices_) internal pure returns
— (uint256) {
uint256 priceslLen = prices_.length;

// If there are an even number of prices, return the average of the two
— middle prices
if (pricesLen % 2 == 0) {
uint256 middlePricel = prices_[priceslen / 2 - 1];
uint256 middlePrice2 = prices_[pricesLen / 2];
return (middlePricel + middlePrice2) / 2;

// Otherwise return the median price

// Don't need to subtract 1 from priceslLen to get midpoint index
// since integer division will round down

return prices_[priceslLen / 2];

As you can see, the median value can be calculated from two values. This problem
exists at getMedianPrice function as well.

29 @/ SHERLOCK

function getMedianPrice(uint256[] memory prices_, bytes memory) public pure
— returns (uint256) {

// Misconfiguration

if (prices_.length < 3) revert
— SimpleStrategy_PriceCountInvalid(prices_.length, 3);

uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);
uint256 nonZeroPricesLen = nonZeroPrices.length;

// Can only calculate a median if there are 3+ non-zero prices
if (nonZeroPriceslLen == 0) return O;

if (nonZeroPriceslLen < 3) return nonZeroPrices[0];

// Sort the prices
uint256[] memory sortedPrices = nonZeroPrices.sort();

return _getMedianPrice(sortedPrices);

Impact
When the length of nonZeroPrices is 2 and they are deviated, it returns first
non-zero value, not median value. It causes wrong calculation error.

Code Snippet
https://github.com/sherlock-audit/2023-11-olympus-web3-master/blob/main/boph

ades/src/modules/PRICE/submodules/strategies/SimplePriceFeedStrategy.sol#L24

6

Tool used

\YERTEIREVIE

Recommendation

First, SimplePriceFeedStrategy.sol#getMedianPricelfDeviation function has to be
rewritten as follows.

function getMedianPriceIfDeviation(
uint256[] memory prices_,
bytes memory params_

) public pure returns (uint256) {
// Misconfiguration

30 @/ SHERLOCK

if (prices_.length < 3) revert
— SimpleStrategy_PriceCountInvalid(prices_.length, 3);

uint256 [] memory nonZeroPrices = _getNonZeroArray(prices_);

// Return 0 if all prices are 0
if (nonZeroPrices.length == 0) return O;

// Cache first non-zero price since the array is sorted in place
uint256 firstNonZeroPrice = nonZeroPrices[0];

// If there are not enough non-zero prices to calculate a median, return
— the first non-zero price
- if (nonZeroPrices.length < 3) return firstNonZeroPrice;
+ if (nonZeroPrices.length < 2) return firstNonZeroPrice;

Second, SimplePriceFeedStrategy.sol#getMedianPrice has to be modified as
following.

function getMedianPrice(uint256[] memory prices_, bytes memory) public pure
— returns (uint256) {
// Misconfiguration
if (prices_.length < 3) revert
— SimpleStrategy_PriceCountInvalid(prices_.length, 3);

uint256[] memory nonZeroPrices = _getNonZeroArray(prices_);

uint256 nonZeroPricesLen = nonZeroPrices.length;
// Can only calculate a median if there are 3+ non-zero prices
if (nonZeroPriceslLen == 0) return O;

= if (nonZeroPricesLen < 3) return nonZeroPrices[0];

+ if (nonZeroPriceslen < 2) return nonZeroPrices[0];

// Sort the prices
uint256[] memory sortedPrices = nonZeroPrices.sort();

return _getMedianPrice(sortedPrices);

Discussion

OxJem

31 @/ SHERLOCK

Agree with the highlighted issue, disagree with the proposed solution.
OxJem
https://github.com/OlympusDAQO/bophades/pull/282

IAMOx52

Fix looks good. Now falls back to getAveragePricelfDeviation() instead of returning
first.

32 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/127

Found by
KupiaSec

Summary

Price calculation module iterates through available price feeds for the requested
asset, gather prices of non-revert price feeds and then apply strategy on available
prices to calculate final asset price. By abusing this functionality, an attacker can
let some price feeds revert to get advantage from any manipulated price feed.

Vulnerability Detail

Here we have some methods that attackers can abuse to intentionally revert price
feeds.

1. UniswapV3 price feed UniswapV3Price.sol#L210-214

// Get the current price of the lookup token in terms of the quote token
(, int24 currentTick, , , , , bool unlocked) = params.pool.slot0();

// Check for re-entrancy
if (unlocked == false) revert UniswapV3_PoolReentrancy(address(params.pool)) ;

In UniswapV3 price feed, it reverts if current state is re-entered. An attacker can
intentionally revert this price feed by calling it from UniswapV3's callback methods.

2. Balancer price feed BalancerPoolTokenPrice.sol#L388 BalancerPoolTokenPric
e.sol#487 BalancerPoolTokenPrice.sol#599 BalancerPoolTokenPrice.sol#748

// Prevent re-entrancy attacks
VaultReentrancyLib.ensureNotInVaultContext (balVault) ;

In BalancerPool price feed, it reverts if current state is re-entered. An attacker can
intentionally revert this price feed by calling it in the middle of Balancer action.

3. BunniToken price feed BunniPirce.sol#L155-160

_validateReserves(
_getBunniKey (token) ,

33 @/ SHERLOCK

‘ lens, ‘
‘ params.twapMaxDeviationsBps,
‘ params . twapObservationWindow
| |
\ |

)

In BunniToken price feed, it validates reserves and reverts if it doesn't satisfy
deviation. Since BunniToken uses UniswapV3, this can be intentionally reverted by
calling it from UniswapV3's mint callback.

Usually for ERC20 token prices, above 3 price feeds are commonly used combined
with Chainlink price feed, and optionally with averageMovingPrice. There are
another two points to consider here:

1. When average moving price is used, it is appended at the end of the price
array. OlympusPrice.v2.s0l#L160

if (asset.useMovingAverage) prices[numFeeds] = asset.cumulativeObs /
— asset.numObservations;

2. In price calculation strategy, first non-zero price is used when there are 2 valid
prices: getMedianPriceIfDeviation - SimplePriceFeedStrategy.sol#L246
getMedianPrice - SimplePriceFeedStrategy.sol#L313 For getAveragePrice and
getAveragePriceIfDeviation, it uses average price if it deviates.

Based on the information above, here are potential attack vectors that attackers
would try:

1. When Chainlink price feed is manipulated, an attacker can disable all three
above price feeds intentionally to get advantage of the price manipulation.

2. When Chainlink price feed is not used for an asset, an attacker can manipulate
one of above 3 spot price feeds and disable other ones.

When averageMovingPrice is used and average price strategy is applied, the
manipulation effect becomes half:

w =P+ ATX, P = MarketPrice, AX = Manipulated Amount

Impact

Attackers can disable some of price feeds as they want with ease, they can get
advantage of one manipulated price feed.

34 @/ SHERLOCK

Code Snippet
https://github.com/sherlock-audit/2023-11-olympus/blob/9¢c8df76dc9820b4c6605

d2e1e6d87dcfa9e50070/bophades/src/modules/PRICE/OlympusPrice.v2.sol#L132
-L184

Tool used

Manual Review

Recommendation

For the cases above that price feeds being intentionally reverted, the price
calculation itself also should revert without just ignoring it.

Discussion

nevillehuang

Invalid, if a user purposely revert price feeds, they are only affecting their own
usage, not the usage of price feeds for other users transactions.

KupiaSecAdmin
Escalate

Hey @nevillehuang - Yes, exactly you are right. What an attacker can manipulate is
a spot price using flashloans, so if an attacker purposely disable other price feeds
but only leave manipulated price feed, there happens a vulnerability that an
attacker can buy tokens at affected price.

sherlock-admin2
Escalate

Hey @nevillehuang - Yes, exactly you are right. What an attacker can
manipulate is a spot price using flashloans, so if an attacker purposely
disable other price feeds but only leave manipulated price feed, there
happens a vulnerability that an attacker can buy tokens at affected price.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

@KupiaSecAdmin, All of your scenarios are invalid

35 @/ SHERLOCK

1. There is no point for somebody to reenter to explicity cause a revert for using
the price feed himself

2. Same reason as 1.

3. There is no point for somebody to cause a deviation to explicity cause a revert
for using the price feed himself

4. A user cannot manipulate a chainlink price feed since there are no reserves

This is on top of the fact that price submodules are not intended to be called
directly, but via the primary price module mentioned in this comment here

KupiaSecAdmin

@nevillehuang - For example, you can manipulate spot price of Uniswap. To make
this work, you need to make other price feeds revert because if they are all
enabled, average/median price strategy will be taken and manipulated spot price
will not take effect.

nevillehuang

@KupiaSecAdmin you cannot make other feeds revert for other user, only yourself,
and your submission certainly doesn't prove that it is possible. Besides, to
manipulate spot price in uniswap, you will have to manipulate the reserves, which is
a known issue in the contest and out of scope.

KupiaSecAdmin

@nevillehuang - | would like to add some notes and scenarios below that | think
might be attack vectors. @0OxJem - | would be happy to get some feedbacks from
the protocol team regarding the issue.

[Notes]

1. (I believe) This price module will be used in other parts of Olympus protocol to
determine fair price of OHM(and other ERC20 tokens) at any time by
integrating multiple price feeds and applying a strategy(average or median) to
different prices to carry out final fair price.

2. The carried out final price will be used to buy/sell OHM tokens using other
collaterals in other modules of Olympus protocol.

[Scenario]

1. Let's assume that an attacker can manipulate a spot price of one price feed,
e.g. Uni2, Uni3, Bunni. It can not be guaranteed that all spot price feeds work
correctly.

2. As aresult, we can assume that the attacker can manipulate OHM price of one
price feed to $9(for example by manipulating Bunni).

36 @/ SHERLOCK

3. However, multiple price feeds are used to calculate fair OHM price, for
example, 3 strategies can be used to determine fair OHM price: Chainlink,
Uniswap3, Bunni. Thus assume Chainlink returns $11.1 and Uniswap3 returns
$11.05 for OHM price.

4. The price strategy takes median strategy, this means manipulating Bunni price
feeds does not take effect on final OHM price determination because the
median price of ($9, $11.05, $11.1) is $11.05 which could be accepted as fair
OHM price.

5. Now, the attacker can intentionally make Uniswap 3 price feed reverting using
re-entrancy.

6. When this happens, the only available price feeds are Chainlink and Bunny
which are $9 and $11.1. Median price strategy is applied to these feeds thus
returning $10 as OHM price, which is affected and this could result in attacker
can buy more OHM tokens than expected.

[Thoughts] Price feeds can revert for any reason by accidents so it would actually
make sense using try/catch to ignore reverted price feeds. However, price feeds
being reverted because of re-entrancy check can not be considered as accidents
because it's intentional and unusual behavior. So | think it's the right behavior to
revert price calculation itself as a whole when any price feed is reverted by
re-entrancy check.

[Claims] @nevillehuang - You were mentioning that | can not make other feeds
revert for other users but only for myself. Yes, that's right. An attacker will let some
price feeds revert only for himself(and only within a single transaction, they should
work fine in other transactions), and it is to manipulate final fair price of tokens
regardless of whatever strategy is taken.

nevillehuang

@KupiaSecAdmin Can you provide a coded PoC for your above scenario? | really
don't see how step 5 can occur, given price feeds are utilized in separate
transactions? How would one users price feed reverting affect another?

5. Now, the attacker can intentionally make Uniswap 3 price feed
reverting using re-entrancy.

KupiaSecAdmin

@nevillehuang @0OxJem - Here's a PoC that shows how price can be manipulated.
You can put this test file in same test directory with PRICE.v2.t.sol.
https://qgist.github.com/KupiaSecAdmin/fc7ef6664b191ab2b758a22ab15bf404

Running test: forge test --fork-url {{MAINNET_RPC}} --fork-block-number
19041673 --match-test testPriceManipulation -vv

Result:

37 @/ SHERLOCK

[PASS] testPriceManipulation() (gas: 2299239)

Logs:
Before: Chainklink/Olympus 6294108760000000000 6308514491323687440
After: Chainklink/Olympus 6294108760000000000 29508079057029841191

Test result: ok. 1 passed; O failed; O skipped; finished in 4.69s

Ran 1 test suites: 1 tests passed, O failed, O skipped (1 total tests)

[Scenario]
1. It calculates UNI price using mainnet's forked data.

2. Itis assumed that Olympus uses UniV2 and UniV3 price feeds for calculating
UNI price.

3. The test manipulates UniV2 price and intentionally reverts UniV3 price feed,
thus the final price is same as manipulated UniV2 price.

[Focus]

1. Even though test shows price manipulation is done via reserves, but reserve
manipulation is not the only way of manipulating price, as Olympus integrates
further more price feeds and based on protocols.

2. The main point to show from the issue and PoC is that intentionally reverting
some price feeds is dangerous because that can be a cause of price
manipulation.

OxJem

@Oighty can you weigh in on the risk of a third-party deliberately triggering the
re-entrancy lock in the UniV3 pool?

To me, this represents a misconfiguration of the asset price feeds.

If it was a single price feed (UniV3) only, it would be fine, as the price lookup would
fail. It's because there's a UniV2 pool in use that this could be susceptible to the
price manipulation as you described. However, this feels unlikely because:

e The depth of liquidity on the UNI / WETH UniV2 pool is $4.32m, which feels
too low for a UniV3 pool (let alone UniV2!), and so we'd be unlikely to use it.

» For an asset that does not have as much liquidity (e.g. we are following this
approach for FXS), we track an internal MA and use that, which ensures that
any manipulation is smoothed out.

If we were to have UNI defined as an asset, we would be more likely to do this:
e UNI/ETH Chainlink feed

38 @/ SHERLOCK

o UNI/WETH UniV3 pool with TWAP

Given the difficulty of manipulation both sources, and the deep liquidity of the
UniV3 pool ($31.65m), we'd be confident that it would be resilient enough.

nevillehuang

* UNI wasn't mentioned as an integrated token in the contest details, so
wouldn't this be invalid?

e Olympus also has many mitigations in place for TWAP manipulation
Czar102

| think this is a really nice finding if true, kudos for the thought process
@KupiaSecAdmin!

Since price manipulation itself is out of scope, but the expectation of using multiple
price sources should make the price more difficult to manipulate, and because of
the bug, the breakdown value falls drastically. Thus | believe it deserves to be a
valid Medium.

I'm not sure about the point above, @0xJem could you explain why would such
setup be a misconfiguration? From my understanding, any setup using any of these
3 oracles and any other one will be susceptible to manipulation.

nevillehuang
@Czar102 Some questions:

1. Is there anywhere it was indicated that the above uni pools would be used as
price feeds? Given the watson made an assumption:

assumed that Olympus uses UniV2 and UniV3 price feeds for calculating
UNI price.

2. Isn't the additional data provided by the watson still related to manipulation of
reserves and like you said out of scope? To me he still hasn't prove that there
is any other cause other than manipulating reserves other than stating a
possibility? Would be nice if he can prove this issues above scenario of 1 and
2 (reentrancy triggering affecting price feed of other users?)

3. Dont Olympus use an internal MA to mitigate risk of reserve manipulation?
OxJem

I'm not sure about the point above, @0OxJem could you explain why
would such setup be a misconfiguration? From my understanding, any
setup using any of these 3 oracles and any other one will be susceptible
to manipulation.

39 @/ SHERLOCK

» Given the risk of a single price feed reverting (causing the 2nd price feed to be
used), we would not use a UniV2 (which doesn't have re-entrancy protection
and is much more susceptible to manipulation) pool as the second feed.

e Instead of this UniV3 + UniV3 combination, if we were to configure in PRICE
for this asset, we would do a Chainlink feed (e.g. UNI-USD, no idea if it exists)
and a UniV3 pool.

Czar102

@nevillehuang | believe the assumption you are mentioning in point 1is just an
example and the different price feeds could be anything, like Uni v3 + Uni v3 —one
could manipulate one of these and make the other revert, for example.

Regarding point 2, | don't think the crux here is the manipulation of reserves, they
may be just off with respect to each other. The point is that the attacker can
selectively decide which sources of information to use, impacting the final price
reading. The point of using multiple feeds is to make the price more reliable, and
they are being made less reliable if you can make the readings be rejected.

Regarding point 3, | believe you could repetitively make the price pass sanity
checks, making it exponentially diverge from the real price.

Regarding @OxJem's points: | believe simply not using a Uni v2 pool doesn't
mitigate this. Using any of the dexes mentioned above together with any feed will
have this impact. So, a Chainlink feed + Uni v3 pool could be exploited in a way that
the Uni v3 reading will revert and only Chainlink feed will be used, which may
benefit the attacker in a certain way.

Has the approach for creating these safe setups been shared with Watsons
anywhere? Am | misunderstanding something? @OxJem @nevillehuang
@KupiaSecAdmin

nevillehuang
@Czar102

o What is the cost of manipulating such price feeds, is it even profitable for the
user?

o The ORIGINAL issue certainly doesn't have sufficient proof to prove that
anything other than manipulation of reserves will cause price feed revert or
show that it is viable/economically viable. Until the watson prove to me with a
reasonable PoC that it is possible, | cannot verify validity, especially not with
information from the original submission. If a judge has to do alot of additional
research apart from what is provided in the issue, it certainly doesn’t help too.

2. In case of non-obvious issues with complex vulnerabilities/attack
paths, Watson must submit a valid POC for the issue to be
considered valid and rewarded.

40 @/ SHERLOCK

e The watson is speculating on how protocol will configure and select different
price feeds. Like @0xJem mentioned, this is protocol determined so the above
mentioned possibilities are all possible assumptions. “Could be anything” is a
weak argument and based off your previous statement here it doesn’t line up,
given configurations of price feeds are not explicitly mentioned in docs

TLDR, unless the watson or YOU provide sufficient proof (best with a PoC) that it is
economically possible/profitable, I'm not convinced this is a valid issue since you

are just simply stating possibility. Please only consider the original submission only
and see if it has sufficient information in place during the time when Im judging this.

Hash01011122

IMO In my opinion, while the precise impact of the potential attack isn't crystal
clear, the mentioned attack path, extending up to price manipulation, significantly
expands the attack surface. This broader surface introduces multiple avenues for
potential attacks that may not be immediately apparent. | find @nevillehuang's
comment lacking in persuasiveness, on how this issue should be considered as
invalid after watson submitted the PoC. With a clear attack impact, Watson's
submission should be rated as High severity. Watson's failure to articulate how the
identified issue could result in a loss of funds for the protocol is crucial. But the
issue highlights numerous ways the core functionality of the contract could be
exploited, making it a valid medium-severity concern.

nevillehuang

@Hash01011122, stating the possibility of an issue and proving it are two separate
things. Can you look at the details provided in the issue and tell me with at least
80% confidence rate that it is valid without additional research by the judge to
prove its validity when its not the case?

For example, the watson is simply stating "user can cause reentrancy" with a single
one liner type comment without any code description/POC (there are multiple
instances throughout the issue)? How am | suppose to verify that? | am a firm
believer that burden of proof is on the watson not the judge, and | believe sherlock
also enforces this stance.

The fact that Head of judging and sponsor has to come in and supplement the
non-obvious finding of the watson certainly doesn't help too, and | believe this will
be resolved in the future now that we have the request poc feature, but | believe as
of contest date, the information provided in the ORIGINAL submission is insufficient
to warrant its severity other than low/invalid.

Czar102

| understood the finding when | haven't read a half or it. | think the only thing that
needs to be verified is that a revert in price reading will cause the price to be
computed based on other sources.

ac @/ SHERLOCK

Selective manipulation of sources of information defeats the purpose of sourcing
the data from many sources - instead of increasing security, the data will be pulled
from potentially least safe sources.

| think it warrants Medium severity.
nevillehuang

@Czar102 ok got it | put it on myself for not having the knowledge u possess to
understand this issue. | will let you decide once you decide what @OxJem
considers. Again understanding and proving to issue is two separate issues for
debate.

Czar102

Result: Medium Unique

sherlock-admin2

Escalations have been resolved successfully!
Escalation status:

o KupiaSecAdmin: accepted

a5 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/149

Found by

bin2chen, dany.armstrong90, lemonmon, rvierdiiev

Summary

in getReservesByCategory() Lack of check data.submoduleReservesSelector!=""
when call submod-

ule.staticcall(abi.encodeWithSelector (data.submoduleReservesSelector)); Will
revert

Vulnerability Detail

when _addCategory() if useSubmodules==true, submoduleMetricSelector must not
empty and submoduleReservesSelector can empty (bytes4(0))

like "protocol-owned-treasury"

_addCategory(toCategory("protocol-owned-treasury"), true, 0xb600c5e2,
— 0x00000000); // getProtocolOwnedTreasuryOhm()"

but when call getReservesByCategory () , don't check
submoduleReservesSelector!=bytes4(0) and direct call submoduleReservesSelector

function getReservesByCategory(
Category category_
) external view override returns (Reserves[] memory) {

// If category requires data from submodules, count all submodules and
— their sources.
len = (data.useSubmodules) 7 submodules.length : 0;

for (uint256 i; i < len;) {
address submodule = address(_getSubmoduleIfInstalled(submodules[i]));
(bool success, bytes memory returnData) = submodule.staticcall(

43 @/ SHERLOCK

abi.encodeWithSelector (data.submoduleReservesSelector)

)

this way , when call like
getReservesByCategory (toCategory ("protocol-owned-treasury") Will revert

POC

add to SUPPLY.v1.t.sol

function test_getReservesByCategory_includesSubmodules_treasury() public {
_setUpSubmodules () ;

// Add OHM/gOHM in the treasury (which will not be included)
ohm.mint (address (treasuryAddress), 100e9);
gohm.mint (address (treasuryAddress), 1el18); // 1 gOHM

// Categories already defined

uint256 expectedBptDai = BPT_BALANCE.mulDiv(
BALANCER_POOL_DAI_BALANCE,
BALANCER_POOL_TOTAL_SUPPLY

)

uint256 expectedBptOhm = BPT_BALANCE.mulDiv(
BALANCER_POOL_OHM_BALANCE,
BALANCER_POOL_TOTAL_SUPPLY

IE

// Check reserves
SPPLYv1.Reserves[] memory reserves = moduleSupply.getReservesByCategory(
toCategory("protocol-owned-treasury")

)

forge test -vv --match-test
— test_getReservesByCategory_includesSubmodules_treasury

Running 1 test for src/test/modules/SPPLY/SPPLY.v1.t.sol:SupplyTest

[FAIL. Reason: SPPLY_SubmoduleFailed(0xeb502B1d35e975321B21cCEOE8890d20a7Eb289d,
— 0x00)]

— test_getReservesByCategory_includesSubmodules_treasury() (gas: 4774197

Impact

some category can't get Reserves

i @/ SHERLOCK

Code Snippet

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/SPPLY/OlympusSupply.sol#L541

Tool used

\YERTEIREVIE

Recommendation

function getReservesByCategory(
Category category_
) external view override returns (Reserves[] memory) {

CategoryData memory data = categoryDatalcategory_];

uint256 categorySubmodSources;

// If category requires data from submodules, count all submodules and
— their sources.

len = (data.useSubmodules) ? submodules.length : 0;
+ len = (data.useSubmodules && data.submoduleReservesSelector!=bytes4(0))
— 7 submodules.length : O;

Discussion

OxJem

Good catch! Thank you for the clear explanation and test case, too.
Oxrusowsky

https://github.com/OlympusDAO/bophades/pull/262

IAmOx52

Fix looks good, exactly as suggested

45 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/155

Found by

0x52, 0xMRO, Arabadzhiev, AuditorPraise, Bauer, CLO01, Drynooo, ZanyBonzy,
ast3ros, bin2chen, coffiasd, cu5tOmPe0, ge6a, hash, jovi, shealtielanz, tvdung94

Summary

In various Balancer LP valuations, totalSupply() is used to determine the total LP
supply. However this is not the appropriate method for determining the supply.
Instead getActualSupply should be used instead. Depending on the which pool
implementation and how much LP is deployed, the valuation can be much too high
or too low. Since the RBS pricing is dependent on this metric. It could lead to RBS
being deployed at incorrect prices.

Vulnerability Detail
AuraBalancerSupply.sol#L345-.362

uint256 balTotalSupply = pool.balancerPool.totalSupply();
uint256[] memory balances = new uint256[] (_vaultTokens.length) ;
// Calculate the proportion of the pool balances owned by the polManager
if (balTotalSupply != 0) {
// Calculate the amount of OHM in the pool owned by the polManager
// We have to iterate through the tokens array to find the index of OHM
uint256 tokenlLen = _vaultTokens.length;
for (uint256 i; i < tokenLen;) {
uint256 balance = _vaultBalances[i];
uint256 polBalance = (balance * balBalance) / balTotalSupply;

balances[i] = polBalance;

unchecked {
++1

>

}

46 @/ SHERLOCK

To value each LP token the contract divides the valuation of the pool by the total
supply of LP. This in itself is correct, however the totalSupply method for a variety
of Balancer pools doesn't accurately reflect the true LP supply. If we take a look at
a few Balancer pools we can quickly see the issue:

This pool shows a max supply of 2,596,148,429,273,858 whereas the actual supply
is 6454.48. In this case the LP token would be significantly undervalued. If a
sizable portion of the reserves are deployed in an affected pool the backing per
OHM would appear to the RBS system to be much lower than it really is. As a result
it can cause the RBS to deploy its funding incorrectly, potentially selling/buying at a
large loss to the protocol.

Impact

Pool LP can be grossly under/over valued

Code Snippet
AuraBalancerSupply.sol#L.332-L369

Tool used

Manual Review

Recommendation

Use a try-catch block to always query getActualSupply on each pool to make sure
supported pools use the correct metric.

Discussion
OxJem
This is a valid issue and highlights problems with Balancer's documentation.

We are likely to drop both the Balancer submodules from the final version, since we
no longer have any Balancer pools used for POL and don't have any assets that
require price resolution via Balancer pools.

e @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/178

Found by
hash

Summary

Incorrect price calculation of tokens in StablePools if amplification factor is being
updated

Vulnerability Detail

The amplification parameter used to calculate the invariant can be in a state of
update. In such a case, the current amplification parameter can differ from the
amplificaiton parameter at the time of the last invariant calculation. The current
implementaiton of getTokenPriceFromStablePool doesn't consider this and always
uses the amplification factor obtained by calling getLastInvariant

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L811-L827

function getTokenPriceFromStablePool(
address lookupToken_,
uint8 outputDecimals_,
bytes calldata params_
) external view returns (uint256) {

try pool.getLastInvariant() returns (uint256, uint256 ampFactor) {

// Qaudit the amplification factor as of the last invariant
— calculation is used
lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(
ampFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
1el8,
StableMath._calculateInvariant (ampFactor, balances_) //
— Sometimes the fetched invariant value does not work, so calculate it

48 @/ SHERLOCK

)

https://vscode.blockscan.com/ethereum/0x1e19cf2d73a72ef1332¢c882f20534b65
19be0276 StablePool.sol

// Qaudit the amplification parameter can be updated
function startAmplificationParameterUpdate(uint256 rawEndValue, uint256
— endTime) external authenticate {

// Q@audit for calculating the invariant the current amplification factor is
— obtained by calling _getAmplificationParameter ()

function _onSwapGivenIn(

SwapRequest memory swapRequest,

uint256[] memory balances,

uint256 indexIn,

uint256 index0Out
) internal virtual override whenNotPaused returns (uint256) {

(uint256 currentAmp,) = _getAmplificationParameter();

uint256 amountOut = StableMath._calcOutGivenIn(currentAmp, balances,
— indexIn, indexOut, swapRequest.amount);

return amountQOut;

Impact

In case the amplification parameter of a pool is being updated by the admin, wrong
price will be calculated.

Code Snippet

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/BalancerPoolTokenPrice.sol#L811-L827

Tool used

Manual Review

Recommendation

Use the latest amplification factor by callling the getAmplificationParameter
function

49 @/ SHERLOCK

Discussion
OxJem

This doesn't seem valid - if the amplification factor is changed since the invariant
was last calculated, wouldn't the value of the invariant also be invalid?

nevillehuang
Hi @OxJem here is additional information provided by watson:

The invariant used for calculating swap amounts in Balancer is always based on the
latest amplification factor hence their calculation would be latest. If there are no
join actions, the cached amplification factor which is used by Olympus will not
reflect the new one and will result in a different invariant and different token price.

i am attaching a poc if required:
https://gist.github.com/10xhash/8e24d0765ee98def8c6409c71a7d2b17

Oxauditsea

Escalate

This looks like invalid. Logically thinking, using getLastInvariant iS more precise
because the goal of this price feed is to calculate spot price of the balancer pool. If
current amplification factor is used, it doesn't represent current state of the pool.

sherlock-admin2
Escalate

This looks like invalid. Logically thinking, using getLastInvariant iS more
precise because the goal of this price feed is to calculate spot price of
the balancer pool. If current amplification factor is used, it doesn't
represent current state of the pool.

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

Czar102
@nevillehuang what do you think?
nevillehuang

@Czar102 | don't quite understand what @Oxauditsea is pointing to. If you want to
calculate the latest spot price, shouldn't you use the latest factor as indicated by
the PoC by @10xhash?

Czar102

50 @/ SHERLOCK

@Oxauditsea could you explain your reasoning in more detail?
nevillehuang

@10xhash does this affect ALL pools intended to be integrated during the time of
contest?

10xhash

It has to be clarified what intended to be integrated pools at the time of contest
are:

1. If only the list of tokens mentioned in the readme can be in a pool (as
mentioned in previous replies this is not required per the contest definition
since all tokens are not required to interact with contracts) : There are 0
stable pools including normal, metastable etc. The only possible stable pool of
any type that can be used with the above restriction is the dai-sdai
metastable pool which has to be deployed in future.

2. Else it must atleast include normal stable pools and according to balancer's
documentation {search startAmplificationParameterUpdate} and testing done
on the dai-usdc-usdt pool, it would be affected

Czar102

1. Metastable pools are not supposed to be supported.

2. This documentation seems to be for Avalanche, while the contracts will be
deployed on mainnet. | believe this functionality exists on mainnet too, right?

Aside from that, the impact is that the price calculated is the price at the last pool
update (trade) instead of the current price?

10xhash

2. The link opens up to Mainnet for me, if not you would have the option to select
the chain on leftside. Yes.

The impact would be that the amplification parameter used in the price calculation
will be that of the last join action (addliquidity , removeliquidity) which will be
different from the actual one used in the pool calculations. This will result in an
incorrect price until some user performs a join operation.

Czar102

Adding/removing liquidity doesn't necessarily happen often. This, together with the
amplification parameter change, is a very unlikely situation, nevertheless a possible
one.

It's a borderline Med/Low, but | am inclined to keep this one a valid Medium. | don't
understand the point made in the escalation, and @Oxauditsea hasn't elaborated
when asked for additional information.

51 @/ SHERLOCK

gstoyanovbg

In determining the impact of this report, in my opinion, it should be assessed how
much the price can change in the described circumstances and whether the
change is significant. | conducted a foundry test that shows the change in the price
of AURA_BAL at different values of the amplification factor. The test should be
added to BalancerPoolTokenPriceStable.t.sol.

function test_amp_factor_impact() public {
bytes memory params = encodeBalancerPoolParams(mockStablePool) ;
uint256 price;

mockStablePool .setLastInvariant (INVARIANT, AMP_FACTOR);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,
PRICE_DECIMALS,
params
)
console.log("%d, AMP_FACTOR = 50000", price);

mockStablePool.setLastInvariant (INVARIANT, AMP_FACTOR + 2000);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,
PRICE_DECIMALS,
params
);
console.log("%d, AMP_FACTOR = 50000 + 2000", price);

mockStablePool.setlLastInvariant (INVARIANT, AMP_FACTOR + 10000);
price = balancerSubmodule.getTokenPriceFromStablePool(
AURA_BAL,
PRICE_DECIMALS,
params
)
console.log("%d, AMP_FACTOR = 50000 + 10000", price);

mockStablePool.setLastInvariant (INVARIANT, AMP_FACTOR * 2);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,
PRICE_DECIMALS,
params
)
console.log("%d, AMP_FACTOR = 50000 * 2", price);

mockStablePool.setLastInvariant (INVARIANT, AMP_FACTOR * 4);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,

59 @/ SHERLOCK

PRICE_DECIMALS,
params
b
console.log("%d, AMP_FACTOR = 50000 * 4", price);

mockStablePool.setLastInvariant (INVARIANT, AMP_FACTOR * 10);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,
PRICE_DECIMALS,
params
)
console.log("%d, AMP_FACTOR = 50000 * 10", price);

mockStablePool.setLastInvariant (INVARIANT, AMP_FACTOR * 100);
price = balancerSubmodule.getTokenPriceFromStablePool (
AURA_BAL,
PRICE_DECIMALS,
params
);
console.log("%d, AMP_FACTOR = 50000 * 100", price);
}

16602528871962134544, AMP_FACTOR = 50000
16606565178508667081, AMP_FACTOR = 50000 + 2000
16620074517406602667, AMP_FACTOR = 50000 + 10000
16655599693391809126, AMP_FACTOR = 50000 * 2
16682630482761745824, AMP_FACTOR = 50000 * 4
16699011129392628938, AMP_FACTOR = 50000 * 10
16708898633935285195, AMP_FACTOR = 50000 * 100

From the obtained results, it can be seen that the change in price is small. Even if
we increase it 100 times to the maximum possible value of 5000 * 10”3, the change
in price is around 0.1 (0.63%). For such a large increase of the amplification factor, it
would take about 7 days (2x per day). Another question is what is the chance that
there will be no join or exit within these 7 days.

@Czar102 | don't know if this is significant enough change in the price for Sherlock,
but wanted to share it to be sure it will be taken into consideration.

Czar102

@gstoyanovbg Thank you for the test, it looks like this should be a low severity
issue.

@10xhash Can you provide a scenario where the price would be altered by more
than 5%?

10xhash

53 @/ SHERLOCK

Place the test inside test/ and run forge test --mt testHash_AmplificationDiff5 It
is asserted that the diff in price is > 5% when the current amplification parameter is
divided by 6 with a 4 day period. Dividing by 6 would make the pool close to 8000
(currently 50000).

pragma solidity 0.8.15;

import "forge-std/Test.sol";

import {IStablePool} from "src/libraries/Balancer/interfaces/IStablePool.sol";
import {IVault} from "src/libraries/Balancer/interfaces/IVault.sol";

import {FullMath} from "src/libraries/FullMath.sol";

import {StableMath} from "src/libraries/Balancer/math/StableMath.sol";

import {IVault} from "src/libraries/Balancer/interfaces/IVault.sol";

import {IBasePool} from "src/libraries/Balancer/interfaces/IBasePool.sol";
import {IWeightedPool} from

— "src/libraries/Balancer/interfaces/IWeightedPool.sol";

import {IStablePool} from "src/libraries/Balancer/interfaces/IStablePool.sol";
import {VaultReentrancyLib} from

< "src/libraries/Balancer/contracts/VaultReentrancyLib.sol";

import {LogExpMath} from "src/libraries/Balancer/math/LogExpMath.sol";

import {FixedPoint} from "src/libraries/Balancer/math/FixedPoint.sol";

interface IStablePoolWithAmp is IStablePool {
function getAmplificationParameter ()
external
view
returns (uint amp, bool isUpdating, uint precision);

function startAmplificationParameterUpdate(uint256 rawEndValue, uint256
— endTime) external;

}

interface IERC20 {
function approve(address spender,uint amount) external;

enum SwapKind { GIVEN_IN, GIVEN_OUT }

struct SingleSwap {
bytes32 poolld;
SwapKind kind;
address assetlIn;
address assetOut;
uint256 amount;

54 @/ SHERLOCK

bytes userData;

}
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;

}

interface VaultWithSwap is IVault{
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);

contract PriceTest is Test {
using FullMath for uint256;

function testHash_AmplificationDiff5() public {
VaultWithSwap balVault =
— VaultWithSwap (0xBA12222222228d8Ba445958a75a0704d566BF2C8) ;

IStablePoolWithAmp pool =
— IStablePoolWithAmp(0x3dd0843A028C86e0b760b1A76929d1C5Ef93a2dd) ;

(, uint cachedAmpFactor) = pool.getLastInvariant();

{
(, bool isUpdating,) = pool.getAmplificationParameter();

assert(isUpdating == false);

console.log("cahced factor",cachedAmpFactor) ;

{
address mainnetFeeSetter = 0xf4A80929163C5179Ca042E1B292F5EFBBE3D89¢€6 ;

vm.startPrank (mainnetFeeSetter) ;
pool.startAmplificationParameterUpdate (cachedAmpFactor / 6 / 1e3,
<~ block.timestamp + 4 days);

vm.warp(block.timestamp + 4 days + 100);

// perform swaps to update the balances with latest amp factor

{

55 @/ SHERLOCK

{

(uint amp,bool isUpdating ,) = pool.getAmplificationParameter() ;
assert (isUpdating == false);

console.log("amp params set");

}

uint[] memory balances_;
uint actualAmpFactor;

bytes32 poolld = pool.getPoolId();

—

(actualAmpFactor, ,) = pool.getAmplificationParameter();

(, Dbalances_,) = balVault.getPoolTokens (poolId);
uint256[] memory scalingFactors = pool.getScalingFactors();

{

uint256 len = scalingFactors.length;
for (uint256 i; i < len; ++i) {
balances_[i] = FixedPoint.mulDown(balances_[i],
scalingFactors[i]);
}
}

// lookup token auraBal and destination token lp token

uint oldCachedPrice;
uint newAmpFactorPrice;
{
uint destinationTokenIndex = O;
uint lookupTokenIndex = 1;
console.log("calculation with previous amp factor");
uint lookupTokensPerDestinationToken;
lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(
cachedAmpFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
lels8,
StableMath._calculatelInvariant (cachedAmpFactor, balances_)

)

// Downscale the amount to token decimals
uint256[] memory scalingFactors = pool.getScalingFactors();
lookupTokensPerDestinationToken = FixedPoint.divDown (

56 @/ SHERLOCK

lookupTokensPerDestinationToken,
scalingFactors[lookupTokenIndex]

)3
uint outputDecimals = 8;

lookupTokensPerDestinationToken =
(lookupTokensPerDestinationToken * 10 ** outputDecimals) /
1e18;

uint destinationTokenPrice = 1127000000;
console.log("bal 1p price", destinationTokenPrice) ;
uint lookupTokenPrice;

lookupTokenPrice = destinationTokenPrice.mulDiv(
10 ** outputDecimals,
lookupTokensPerDestinationToken

)3

oldCachedPrice = lookupTokenPrice;

console.log("aurabal price", lookupTokenPrice) ;

uint destinationTokenIndex = O;
uint lookupTokenIndex = 1;
console.log("calculation with updated amp factor");
uint lookupTokensPerDestinationToken;
lookupTokensPerDestinationToken = StableMath._calcOutGivenIn(
actualAmpFactor,
balances_,
destinationTokenIndex,
lookupTokenIndex,
1el8,
StableMath._calculateInvariant (actualAmpFactor, balances_)

)

// Downscale the amount to token decimals
uint256[] memory scalingFactors = pool.getScalingFactors();
lookupTokensPerDestinationToken = FixedPoint.divDown (
lookupTokensPerDestinationToken,
scalingFactors[lookupTokenIndex]

)
uint outputDecimals = 8;

lookupTokensPerDestinationToken =
(lookupTokensPerDestinationToken * 10 ** outputDecimals) /

57 @/ SHERLOCK

1e18;

uint destinationTokenPrice = 1127000000;
console.log("bal 1p price", destinationTokenPrice) ;
uint lookupTokenPrice;

lookupTokenPrice = destinationTokenPrice.mulDiv(
10 ** outputDecimals,
lookupTokensPerDestinationToken

)3

newAmpFactorPrice = lookupTokenPrice;

console.log("aurabal price", lookupTokenPrice);

assert ((oldCachedPrice -newAmpFactorPrice) * 100 * 1el8 /
— newAmpFactorPrice > 5 ether);

}

gstoyanovbg

@10xhash well done, i think your test is valid and shows a significant price change.
Czar102

Thank you @10xhash! Planning to leave the issue as is.

Czar102

Result: Medium Unique

sherlock-admin2

Escalations have been resolved successfully!

Escalation status:

o Oxauditsea: rejected

58 @/ SHERLOCK

Source: https://github.com/sherlock-audit/2023-11-olympus-judging/issues/193

Found by

ast3ros, coffiasd, dany.armstrong90, evilakela, hash

Summary

The current implementation of the isDeviatingWithBpsCheck function in the
codebase leads to inaccurate deviation calculations, potentially allowing deviations
beyond the specified limits.

Vulnerability Detail

The function isDeviatingWithBpsCheck checks if the deviation between two values
exceeds a defined threshold. This function incorrectly calculates the deviation,
considering only the deviation from the larger value to the smaller one, instead of
the deviation from the mean (or TWAP).

function isDeviatingWithBpsCheck(
uint256 valueO_,
uint256 valuel_,
uint256 deviationBps_,
uint256 deviationMax_
) internal pure returns (bool) {
if (deviationBps_ > deviationMax_)
revert Deviation_InvalidDeviationBps(deviationBps_, deviationMax_);

return isDeviating(valueO_, valuel_, deviationBps_, deviationMax_);

function isDeviating(
uint256 valueO_,
uint256 valuel_,
uint256 deviationBps_,
uint256 deviationMax_
) internal pure returns (bool) {
return
(valueO_ < valuel_)
7 _isDeviating(valuel_, valueO_, deviationBps_, deviationMax_)
: _isDeviating(valueO_, valuel_, deviationBps_, deviationMax_);

59 @/ SHERLOCK

|3 |

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/librar
ies/Deviation.sol#L23-L52

The function then call _isDeviating to calculate how much the smaller value is
deviated from the bigger value.

function _isDeviating(
uint256 valueO_,
uint256 valuel_,
uint256 deviationBps_,
uint256 deviationMax_
) internal pure returns (bool) {
return ((valueO_ - valuel_) * deviationMax_) / valueO_ > deviationBps_;

}

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/librar
ies/Deviation.sol#L63-L70

The function isDeviatingWithBpsCheck is usually used to check how much the
current value is deviated from the TWAP value to make sure that the value is not
manipulated. Such as spot price and twap price in UniswapV3.

if (
// ~isDeviatingWithBpsCheck()~ will revert if “deviationBps™ is invalid.
Deviation.isDeviatingWithBpsCheck(
baseInQuotePrice,
baseInQuoteTWAP,
params.maxDeviationBps,
DEVIATION_BASE
)
) 1
revert UniswapV3_PriceMismatch(address(params.pool), baseInQuoteTWAP,
< baseInQuotePrice);

https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/mod
ules/PRICE/submodules/feeds/UniswapV3Price.sol#L225-L235

The issue is isDeviatingWithBpsCheck is not check the deviation of current value to
the TWAP but deviation from the bigger value to the smaller value. This leads to an
incorrect allowance range for the price, permitting deviations that exceed the
acceptable threshold.

Example:

50 @/ SHERLOCK

TWAP price: 1000 Allow deviation: 10%.

The correct deviation calculation will use deviation from the mean. The allow price
will be from 900 to 1100 since:

« |1100 - 1000| / 1000 = 10%
« |900 - 1000| / 1000 = 10%
However the current calculation will allow the price from 900 to 1111
e (1111 -1000) / 1111 = 10%
» (1000 - 900) /1000 = 10%
Even though the actual deviation of 1111 to 1000 is |1111 - 1000]| / 1000 = 11.11% >
10%
Impact
This miscalculation allows for greater deviations than intended, increasing the

vulnerability to price manipulation and inaccuracies in Oracle price reporting.

Code Snippet
https://github.com/sherlock-audit/2023-11-olympus/blob/main/bophades/src/librar

ies/Deviation.sol#L63-L70

Tool used

Manual review

Recommendation

To accurately measure deviation, the isDeviating function should be revised to
calculate the deviation based on the mean value: | spot value - twap value | /
twap value.

Discussion

Oxrusowsky
https://github.com/OlympusDAO/bophades/pull/245

IAmOx52
Escalate

This is purely a design choice. Nothing here is wrong with the implementation. The
deviation is purely subjective and is measured objectively the same in both

51 @/ SHERLOCK

directions. This should be a low severity issue in my opinion and | strongly believe it
should be. At the maximum this should be a medium severity issues as impact is
not large at all for any reasonable variation and only subjectively incorrect

sherlock-admin2
Escalate

This is purely a design choice. Nothing here is wrong with the
implementation. The deviation is purely subjective and is measured
objectively the same in both directions. This should be a low severity
issue in my opinion and | strongly believe it should be. At the maximum
this should be a medium severity issues as impact is not large at all for
any reasonable variation and only subjectively incorrect

You've created a valid escalation!
To remove the escalation from consideration: Delete your comment.

You may delete or edit your escalation comment anytime before the 48-hour
escalation window closes. After that, the escalation becomes final.

nevillehuang

@IAMOx52 I'm pretty sure sponsor acknowledging this with a fix indicates this is
not a design choice. Let me know if there are any publicly available information at
time of contests that points to that that I am missing.

Since price values are CORE components of price modules, | labelled it as high as
the returned price should never be allowed to have too significant of a deviation if
not every use case of this prices will be impacted. | think #3 highlights the possible
impact of this issues well, and as such this issues should have a minimum of
medium severity if not high.

IAmOx52

This is only used in the BUNNI library which is full range liquidity. This simply used
to ensure that reserves have not been manipulated and is not the price being used.
Using the example provided at a 10% deviation. Reserves can be ~1% different
between methodologies.

Let's do a small bit of math to figure this. Assume current invariant is 10000 and
there should be 100 of each token (100 * 100 = 10000). If each token is worth $1
then the true value of the pool is 200 (1 * 100 + 1 * 100) Assume price has been
manipulated up 10% so now the pool has 110 and 90.9 (10000 / 110) so the value of
the pool is now 200.9 (110 * 1 + 90.9 * 1). Lets move it 1.111% more to 11.111% this
means there is 111.1111 and 90 (10000 / 111.111) so the value of the pool is now
201111 (111211 * 1 + 90 * 1). This results in a difference of 0.211 on a value of 200.9
or 0.1%. This is entirely negligible and hence why | say the deviation check order is
a design choice and either way is negligible.

62 @/ SHERLOCK

nevillehuang

@IAMOx52 Agree with your analysis, but on context that core contract functionality
of deviation check is broken, suggest to keep medium severity.

IAmOx52
Fix looks good. Benchmark is now always the middle for comparison
Czar102

| agree that calculating deviation in log is a valid design choice. Nevertheless, |
think it was clear from the comments in code that the deviation was supposed to
be calculated symmetrically and linearly, | acknowledge the limitations of this bug
as well.

Hence, planning to consider this a medium severity issue.
Czar102

Result: Medium Has duplicates

sherlock-admin2

Escalations have been resolved successfully!

Escalation status:

e |IAmOx52: accepted

63 @/ SHERLOCK

Sherlock does not provide guarantees nor warranties relating to the security of the
project.

Usage of all smart contract software is at the respective users’ sole risk and is the
users’ responsibility.

64 @/ SHERLOCK

