
Review Resources:

OlympusDAO governance documentation

Auditors:

puxyz

Drastic Watermelon

yAudit OlympusDAO Governance Review

Table of Contents

Review Summary1

Scope2

Code Evaluation Matrix3

Findings Explanation4

Critical Findings5

High Findings6

Medium Findings7

1. Medium - Proposals containing transactions to an empty account can be forced to

fail

a

2. Medium - A proposal’s quorum votes can be manipulated with flashloansb

3. Medium - Denial of service during emergency executionc

POCd

Low Findings8

1. Low - Refund excess msg.value back to executora

2. Low - getVoteOutcome returns an invalid response for Emergency proposalb

https://docs.olympusdao.finance/main/governance/governance

OlympusDAO Governance

OlympusDAO Governance provides a fork of Compound’s GovernorBravo governance

system, which has been adapted to use the gOHM token to represent users’ voting power.

These contracts enable the OlympusDAO community to propose, vote on, and implement the

Olympus V3 system changes. Proposals can modify system parameters, activate or

deactivate policies, and install or upgrade modules, effectively allowing the addition of new

features and the mutation of the protocol.

The contracts of the OlympusDAO Governance Repo were reviewed over four days. Two

auditors performed the code review between October 7th and October 10th, 2024. The

repository was under active development during the review, but the review was limited to the

latest commit for the OlympusDAO Governance repo.

3. Low - state() function always returns ProposalState.Emergency for emergency

proposals

c

4. Low - Emergency proposals can be queued and executed multiple times by

vetoGuardian

d

Gas Saving Findings9

1. Gas - Optimize GovernorBravoDelegator.fallbacka

2. Gas - Optimize GovernorBravoDelegator.delegateTob

3. Gas - Cache external call resultsc

4. Gas - Cache frequently used storage variablesd

5. Gas - Simply if-statement conditionse

Informational Findings10

1. Informational - Missing bound checks for activationGracePeriod_a

2. Informational - Duplicate codeb

3. Informational - Misleading commentsc

4. Informational - GovernorBravoDelegate._isHighRiskProposal returns false for

InstallModule Kernel action

d

5. Informational - Ambiguous proposal expiration conditionse

Final remarks11

Review Summary

https://docs.compound.finance/v2/governance/
https://etherscan.io/address/0x0ab87046fBb341D058F17CBC4c1133F25a20a52f
https://github.com/OlympusDAO/olympus-v3
https://github.com/OlympusDAO/olympus-v3/tree/85f72be307e090fc7252f3d66e93aa8082094056/

The scope of the review consisted of the following contracts at the specific commit:

src/external/governance

├── abstracts

│ └── GovernorBravoStorage.sol

├── GovernorBravoDelegate.sol

├── GovernorBravoDelegator.sol

├── interfaces

│ ├── IGovernorBravoEvents.sol

│ └── ITimelock.sol

├── lib

│ └── ContractUtils.sol

└── Timelock.sol

4 directories, 7 files

After the findings were presented to the OlympusDAO Governance team, fixes were made

and included in several PRs.

This review is a code review to identify potential vulnerabilities in the code. The reviewers did

not investigate security practices or operational security and assumed that privileged

accounts could be trusted. The reviewers did not evaluate the security of the code relative to

a standard or specification. The review may not have identified all potential attack vectors or

areas of vulnerability.

yAudit and the auditors make no warranties regarding the security of the code and do not

warrant that the code is free from defects. yAudit and the auditors do not represent nor imply

to third parties that the code has been audited nor that the code is free from defects. By

deploying or using the code, OlympusDAO Governance and users of the contracts agree to

use the code at their own risk.

Scope

Code Evaluation Matrix

Category Mark Description

Access Control Good
Access control is correctly implemented in user and admin-

controlled functionality.

Mathematics Average
The reviewed contracts have no complex mathematical

calculations.

Complexity Low

Some functionalities added on top of Compound’s initial

system implementation have made the proposal life cycle

more complex, leading to issues when the system enters

emergency mode.

Libraries Good
The contracts use OpenZeppelin’s library to recover an

ECDSA signer’s address.

Decentralization Average

The protocol team has introduced an additional admin

account with the power to veto any proposal before its

execution. This role is intended to be held by a multisig

account.

Code stability Good No code changes were made during the review.

Documentation Good

The protocol disposes of clear documentation for its

governance system in its documentation website. The smart

contract functions have NATSPEC documentation with

occasional inline comments to clarify their implementation

further.

Monitoring Average Adequate monitoring mechanisms are in place.

Testing and

verification
Average

An extensive testing contract containing unit, integration, and

fuzz tests is provided within the repo. The test suite may be

improved by executing the tests against a forked

environment instead of a mocked one.

Findings are broken down into sections by their respective impact:

Critical, High, Medium, Low impact

Findings Explanation

These are findings that range from attacks that may cause loss of funds, impact

control/ownership of the contracts, or cause any unintended consequences/actions

that are outside the scope of the requirements.

Gas savings

Findings that can improve the gas efficiency of the contracts.

Informational

Findings including recommendations and best practices.

None.

None.

GovernorBravoDelegate implements the logic that allows gOHM token holders to propose, vote,

execute and cancel actions to be executed by the contract.

When a set of transactions is proposed via GovernorBravoDelegate.propose , the contract stores

each action’s target account’s code hash. Upon execution, the saved code hashes are

checked to match the current targets’ code hashes to ensure the account’s code wasn’t

altered in any way.

The contract fails to take into consideration the fact that the EXTCODESIZE opcode exhibits

peculiar behaviour when aimed at empty accounts and initialized accounts with no code:

Critical Findings

High Findings

Medium Findings

1. Medium - Proposals containing transactions to an empty account can be

forced to fail

Technical Detai ls

Calculating the external code hash of an account that has never been initialized (i.e., has

no code, holds no balance, nonce is 0), returns 0

1

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L129
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L165-L174
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L165-L174

In the rare case of a proposal’s transaction with an empty account as the target, an attacker

can DOS the proposal’s execution by simply sending 1 wei to the account. This would modify

the value returned by EXTCODEHASH , forcing the proposal’s execution to revert.

Calculating the external code hash of an account with no code but has been initialized

returns 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 .

2

Medium. Proposals with at least 1 transaction with an empty account as the target can be

forced to fail.

Add the following test case to test/external/governance/GovernorBravoDelegate.t.sol and run

it with forge t --mt test_CodehashChange_poc

function test_CodehashChange_poc() public {

address attacker = makeAddr("attacker");

vm.deal(attacker, 10 ether);

uint256 proposalId = _queueProposal(1); // AUDIT creates proposal with empty

fields, address(0) is an empty account in a non-forked env

bytes32 initialCodeHash;

assembly {

 initialCodeHash := extcodehash(0)

}

// Warp forward through timelock delay

vm.warp(block.timestamp + 1 days + 1);

// Before proposal is executed, attacker sends 1 wei to empty account, changing

its codehash

vm.prank(attacker); payable(address(0)).call{value: 1 wei}("");

vm.expectRevert();

address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature("execute(uint256)", proposalId)

);

bytes32 finalCodeHash;

assembly {

 finalCodeHash := extcodehash(0)

}

Impact

PoC

assertTrue(initialCodeHash != finalCodeHash);

assertTrue(initialCodeHash == bytes32(0));

assertTrue(finalCodeHash ==

bytes32(0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470));

}

Given that on Ethereum, after the Cancun upgrade, SELFDESTRUCT allows only to modify an

account’s code within its deployment transaction, the threat of an account mutating its code

has been neutralized. As a result, there is no need to verify whether the account’s code has

changed between an action’s proposal and its execution.

In light of this fact, if the protocol wishes to maintain this check, it may be executed via the

EXTCODESIZE opcode instead of EXTCODEHASH to ensure that an account’s code hasn’t been

altered between the proposal and execution phases.

Interesting find, but it is unlikely that a proposal will target an empty account. Additionally, if

this happens, a new proposal could be submitted once the account is non-empty and be

able to proceed. Therefore, won’t fix.

A proposal’s quorum amount can be manipulated using OHM tokens to mint a large amount of

gOHM tokens, altering gOHM.totalSupply .

GovernorBravoDelegator.getQuorumVotes returns the amount of gOHM tokens required for a

proposal reach quorum and become executable. Given that OHM has a rebasing supply, the

quorum amount is calculated as a percentage of gOHM.totalSupply at the time of a proposal’s

activation.

Consequently, an attacker can manipulate a proposal’s quorum amount by minting a large

amount of gOHM tokens. Note that, at the time of writing, instantly minting new gOHM from OHM

is possible because OlympusStaking.warmupPeriod() returns 0 .

Recommendation

Developer Response

2. Medium - A proposal’s quorum votes can be manipulated with flashloans

Technical Detai ls

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L806-L808
https://etherscan.io/address/0xB63cac384247597756545b500253ff8E607a8020#readContract

Furthermore, given that GovernorBravoDelegator.activate allows any user to activate a given

pending proposal, an attacker can execute the shown attack in a single transaction,

leveraging an OHM flashloan.

At the time of writing, the following amounts of OHM are available for an attacker to use in this

attack, either via a direct flashloan from the liquidity pool or via a swap on a pool with

flashloaned funds:

0x88051b0eea095007d3bef21ab287be961f3d8598 | UniV3 pool | 138'537 OHM

0x893f503fac2ee1e5b78665db23f9c94017aae97d | UniV3 pool | 14'935 OHM

0x79fe75708e834c5a6857a8b17eeac651907c1da8 | UniV2 pool | 26'438 OHM

0xfc1e8bf3e81383ef07be24c3fd146745719de48d | Curve pool | 23'353 OHM

Total = 138537 + 14935 + 26438 + 23353 = 203'263 OHM

Total gOHM = 203'263 * 0.0037 = 752.07 gOHM

Relative amount of gOHM minted = 752 / 65k = 1.16% of current total supply

Finally, note that the same attack vector theoretically exists in the opposite direction: given

that unstaking gOHM burns the unstaked amount, gOHM.totalSupply can be pushed to a lower

value. This vector isn’t currently exploitable, as a negligible amount of ~40 gOHM , equal to

~0.06% of gOHM.totalSupply , was found to be available for flashloans via Uniswap V3 LPs and a

Fraxlend Pair.

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L287-L310

Medium. Quorum vote amount can be manipulated via flashloans and the current gOHM

minting process.

A new test file has been created to verify the finding with the following fork test. To execute

the PoC, insert the following content in a new test file, e.g.

src/test/external/governance/GovernorBravoDelegateForkTest.t.sol and execute it via forge t

--mt test_flashloan_quorum_manipulation_poc --rpc-url $ETH_RPC_URL --fork-block-number

20921273 :

// SPDX-License-Identifier: Unlicense

pragma solidity 0.8.15;

import {Test} from "forge-std/Test.sol";

import {Address} from "@openzeppelin/contracts/utils/Address.sol";

import {console2} from "forge-std/console2.sol";

import {GovernorBravoDelegator} from

"src/external/governance/GovernorBravoDelegator.sol";

import {GovernorBravoDelegate} from "src/external/governance/GovernorBravoDelegate.sol";

interface IERC20 {

 function balanceOf(address account) external view returns (uint256);

 function transfer(address recipient, uint256 amount) external returns (bool);

 function approve(address spender, uint256 amount) external returns (bool);

}

interface IOlympustStaking {

 function stake(address to, uint256 amount, bool rebasing, bool claim) external

returns (uint256);

 function unstake(address to, uint256 amount, bool trigger, bool rebasing) external

returns (uint256);

}

contract GovernorBravoDelegateForkTest is Test {

Impact

PoC

 using Address for address;

 GovernorBravoDelegator internal governorBravoDelegator;

 function setUp() public {

 governorBravoDelegator =

GovernorBravoDelegator(payable(0x0941233c964e7d7Efeb05D253176E5E634cEFfcD));

 }

 function test_flashloan_quorum_manipulation_poc() public {

 // Attacker pulls OHM flashloan

 IOlympustStaking olympusStaking =

IOlympustStaking(0xB63cac384247597756545b500253ff8E607a8020);

 IERC20 ohm = IERC20(0x64aa3364F17a4D01c6f1751Fd97C2BD3D7e7f1D5);

 address attacker = makeAddr("attacker");

 deal(address(ohm), attacker, 200_000 * 10e9); // AUDIT attacker takes 200k OHM

token flashloan. Tokens are dealt for simplicity, tokens can be pulled from 4 identified

sources

 // Pre wrap quorum votes

 (bool success, bytes memory data) =

address(governorBravoDelegator).call(abi.encodeCall(GovernorBravoDelegate.getQuorumVotes

, ()));

 assertTrue(success, "Failed to get quorum votes once");

 uint256 quorumVotes = abi.decode(data, (uint256));

 // Attacker wraps OHM to gOHM

 vm.startPrank(attacker);

 ohm.approve(address(olympusStaking), 200_000 * 10e9);

 olympusStaking.stake(attacker, 200_000 * 10e9, false, true); // AUDIT rebasing =

false && claim = true to receive gOHM

 vm.stopPrank();

 // Post wrap quorum votes

 (success, data) =

address(governorBravoDelegator).call(abi.encodeCall(GovernorBravoDelegate.getQuorumVotes

, ()));

 assertTrue(success, "Failed to get quorum votes twice");

 uint256 quorumVotesAfter = abi.decode(data, (uint256));

 // Assert quorum votes can be raised

 assertLt(quorumVotes, quorumVotesAfter, "Quorum votes wasn't manipulated");

 // Assert quorum votes have been moved around 1.1%

 assertGt(quorumVotesAfter, quorumVotes * 110 / 100, "Bound 1");

 assertLt(quorumVotesAfter, quorumVotes * 112 / 100, "Bound 2");

 }

}

The protocol should consider implementing a checkpoint mechanism for gOHM.totalSupply ,

similar to what has been done for gOHM and its voting power calculations. This way, the

protocol can defend itself from changes to gOHM.totalSupply within the same block,

mitigating the shown issue altogether.

Acknowledged, but won’t fix. The potential impact of this is low and mitigating it completely

would require replacing gOHM. If the amount of flashloanable OHM increases to a point

where this can have a material impact on governance, we can mitigate by enabling the

staking warmup which would prevent staking loaned OHM immediately.

GovernanceBravoDelegate.execute can be DOS in a state of emergency due to the lack of a

check for an emergency proposal.

Recommendation

Developer Response

3. Medium - Denial of service during emergency execution

https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L373

When the gOHM supply is low, the contract enters an emergency mode . In this mode, the

vetoGuardian can create an emergency proposal, which can be queued immediately but must

wait before execution. The problem arises during this waiting period. If someone stakes OHM

to create more gOHM, increasing the supply, it takes the contract out of emergency mode .

When execution is attempted, the contract checks if it’s still an emergency. Moving onto the

else statement, it then tries to verify if the proposal is in the correct state for execution.

However, emergency proposals are always in an “Emergency” state, which doesn’t allow

execution, as it is an invalid state.

 function execute(uint256 proposalId) external payable {

 Proposal storage proposal = proposals[proposalId];

 // This condition will be bypassed by attacker, putting execution in the else

case

 if (_isEmergency()) {

 // In an emergency state, only the veto guardian can queue proposals

 if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

 } else {

 // This condition will always revert, as state is fixed for emergency

proposals.

 if (state(proposalId) != ProposalState.Queued) revert

GovernorBravo_Execute_NotQueued();

 // ... rest code

}

The same applies to queue() function.

Technical Detai ls

 function queue(uint256 proposalId) external {

 Proposal storage proposal = proposals[proposalId];

 if (_isEmergency()) {

 // In an emergency state, only the veto guardian can queue proposals

 if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

 } else {

 // Check if proposal is succeeded

 if (state(proposalId) != ProposalState.Succeeded)

 revert GovernorBravo_Queue_FailedProposal();

 // Check that proposer has not fallen below proposal threshold since

proposal creation

 if (

 gohm.getPriorVotes(proposal.proposer, block.number - 1) <

proposal.proposalThreshold

) revert GovernorBravo_Queue_BelowThreshold();

 }

// ... rest code

Medium. It effectively allows an individual to block emergency actions by manipulating the

gOHM supply after making an emergency proposal. When the protocol faces a critical issue

requiring immediate action, this vulnerability could prevent timely intervention, potentially

leading to financial losses or other severe consequences.

Impact

POC

 function testAttack() public {

 // Burn all gOHM

 gohm.burn(address(0), gohm.balanceOf(address(0)));

 gohm.burn(alice, gohm.balanceOf(alice));

 address[] memory targets = new address[](1);

 uint256[] memory values = new uint256[](1);

 string[] memory signatures = new string[](1);

 bytes[] memory calldatas = new bytes[](1);

 targets[0] = address(testor);

 values[0] = 100 ether;

 signatures[0] = "test()";

 calldatas[0] = "";

 vm.startPrank(vetoGuardian);

 bytes memory data = address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature(

 "emergencyPropose(address[],uint256[],string[],bytes[])",

 targets,

 values,

 signatures,

 calldatas

)

);

 uint256 proposalId = abi.decode(data, (uint256));

 address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature("queue(uint256)", proposalId)

);

 vm.roll(block.number + 72002);

 vm.warp(block.timestamp + 1 days + 1);

 vm.deal(vetoGuardian, 1000 ether);

 // increase gohm supply

 gohm.mint(address(0xbeef), 10000 * 1e18);

 // execution fails

 data = address(governorBravoDelegator).functionCallWithValue(

 abi.encodeWithSignature(

 "execute(uint256)",

 proposalId

),

 100 ether

);

 vm.stopPrank();

 }

The check for emergency status could be removed from the execution process for

emergency proposals.

 function execute(uint256 proposalId) external payable {

 Proposal storage proposal = proposals[proposalId];

- if (_isEmergency()) {

- // In an emergency state, only the veto guardian can queue proposals

- if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

- } else {

- // Check if proposal is succeeded

- if (state(proposalId) != ProposalState.Queued) revert

GovernorBravo_Execute_NotQueued();

- // Check that proposer has not fallen below proposal threshold since

proposal creation

- if (

- gohm.getPriorVotes(proposal.proposer, block.number - 1) <

proposal.proposalThreshold

-) revert GovernorBravo_Execute_BelowThreshold();

+ // Check if this is an emergency proposal

+ bool isEmergencyProposal = (proposal.startBlock == 0 && proposal.proposer ==

vetoGuardian);

+

+ if (!isEmergencyProposal) {

+ // For non-emergency proposals, keep the existing checks

+ if (_isEmergency()) {

+ revert GovernorBravo_OnlyVetoGuardian();

+ }

+ if (state(proposalId) != ProposalState.Queued) {

+ revert GovernorBravo_Execute_NotQueued();

+ }

+ if (gohm.getPriorVotes(proposal.proposer, block.number - 1) <

proposal.proposalThreshold) {

+ revert GovernorBravo_Execute_BelowThreshold();

+ }

Recommendation

+ } else {

+ // For emergency proposals, only check if the caller is the veto guardian

+ if (msg.sender != vetoGuardian) {

+ revert GovernorBravo_OnlyVetoGuardian();

+ }

 }

+ // Rest of the function remains unchanged

The above recommendation should also be applied to queue() .

Fixed in PR#13.

GovernorBravoDelegate.execute should refund excess ether back to msg.sender

To execute a proposal that accepts ether, executor needs to call

GovernorBravoDelegate.execute function with msg.value , which will be then used across all

targets of proposals by calling timelock.executeTransaction , but the excess msg.value should

be refunded to the executor after the execution ends.

Low

Additionally, two more recommendations are included in the following code block.

Developer Response

Low Findings

1. Low - Refund excess msg.value back to executor

Technical Detai ls

Impact

Recommendation

Gas saving by sending all values in a single call.1

Additional check that the contract balance should be more than the total sum of values.2

https://github.com/OlympusDAO/olympus-v3/pull/13
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L370

 function execute(uint256 proposalId) external payable {

 Proposal storage proposal = proposals[proposalId];

 if (_isEmergency()) {

 // In an emergency state, only the veto guardian can queue proposals

 if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

 } else {

 // Check if proposal is succeeded

 if (state(proposalId) != ProposalState.Queued) revert

GovernorBravo_Execute_NotQueued();

 // Check that proposer has not fallen below proposal threshold since

proposal creation

 if (

 gohm.getPriorVotes(proposal.proposer, block.number - 1) <

proposal.proposalThreshold

) revert GovernorBravo_Execute_BelowThreshold();

 }

 proposal.executed = true;

 uint totalValue;

 uint256 numActions = proposal.targets.length;

 uint256 i;

 for (i = 0; i < numActions;) {

 totalValue += proposal.values[i];

 unchecked {

 i++;

 }

 }

 // Check for balance

 require(address(this).balance >= totalValue, "NOT ENOUGH ETH TO EXECUTE

PROPOSAL");

 // send all value in single call

 (bool s,) = address(timelock).call{value: totalValue}("");

 require(s, "timelock can not be funded for proposal");

 for (i = 0; i < numActions;) {

 timelock.executeTransaction(

 proposalId,

 proposal.targets[i],

 proposal.values[i],

 proposal.signatures[i],

 proposal.calldatas[i],

 proposal.codehashes[i],

 proposal.eta

);

 unchecked {i ++;}

 }

 // refund back to user

 if (msg.value > totalValue) {

 (s,) = address(msg.sender).call{value: msg.value - totalValue}("");

 require(s, "could not refund user");

 }

 emit ProposalExecuted(proposalId);

 }

Acknowledged, but won’t fix. Any leftover ETH can be rescued with a follow-on proposal if

needed.

GovernorBravoDelegate.getVoteOutcome does not consider the case of Emergency proposals .

Developer Response

2. Low - getVoteOutcome returns an invalid response for Emergency proposal

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L898

In the GovernorBravoDelegate contract, the getVoteOutcome function always returns false for

emergency proposals. This is because emergency proposals skip the voting process,

resulting in forVotes and againstVotes both being zero.

function getVoteOutcome(uint256 proposalId) public view returns (bool) {

 Proposal storage proposal = proposals[proposalId];

 if (proposal.forVotes == 0 && proposal.againstVotes == 0) {

 return false;

 }

 // ... rest of the function

}

Technical Detai ls

Low. This bug does not affect the execution of emergency proposals, as the contract

bypasses normal voting checks for these proposals. However, it may confuse if external

systems or interfaces rely on the getVoteOutcome function to determine the status of all

proposals, including emergency ones.

function getVoteOutcome(uint256 proposalId) public view returns (bool) {

 Proposal storage proposal = proposals[proposalId];

 // Check if it's an emergency proposal

+ if (proposal.proposer == vetoGuardian && proposal.startBlock == 0 &&

proposal.targets.length > 0) {

+ return !proposal.canceled && !proposal.vetoed;

+ }

 // Existing logic for normal proposals

 if (proposal.forVotes == 0 && proposal.againstVotes == 0) {

 return false;

 } else if (

 (proposal.forVotes * 100_000_000) / (proposal.forVotes + proposal.againstVotes)

<

 approvalThresholdPct ||

 proposal.forVotes < proposal.quorumVotes

) {

 return false;

 }

 return true;

}

Fixed in PR#13.

Impact

Recommendation

Developer Response

3. Low - state() function always returns ProposalState.Emergency for emergency

proposals

https://github.com/OlympusDAO/olympus-v3/pull/13

In the GovernorBravoDelegate contract, the state() function always returns

ProposalState.Emergency for emergency proposals, regardless of their actual state.

function state(uint256 proposalId) public view returns (ProposalState) {

 // ... earlier code here

 if (

 proposal.startBlock == 0 &&

 proposal.proposer == vetoGuardian &&

 proposal.targets.length > 0

) {

 // We want to short circuit the proposal state if it's an emergency proposal

 // We do not want to leave the proposal in a perpetual pending state (or

otherwise)

 // where a user may be able to cancel or reuse it

 return ProposalState.Emergency;

 }

 // ... (rest of the function)

}

This means that even after an emergency proposal has been executed , queued , or even

vetoed , the state() function will still return ProposalState.Emergency .

Technical Detai ls

Low.

Modify the state() function to reflect the current state of emergency proposals accurately.

 function state(uint256 proposalId) public view returns (ProposalState) {

 if (proposalCount < proposalId) revert GovernorBravo_Proposal_IdInvalid();

 Proposal storage proposal = proposals[proposalId];

 if (

 proposal.startBlock == 0 &&

 proposal.proposer == vetoGuardian &&

 proposal.targets.length > 0

) {

+ if (proposal.executed) return ProposalState.Executed;

+ else if (proposal.vetoed) return ProposalState.Vetoed;

+ return ProposalState.Emergency;

 }

 // ... rest code

Fixed in PR#13.

In the GovernorBravo contract, an oversight allows emergency proposals to be queued and

executed multiple times, even after they’ve been successfully executed once. This is due to

insufficient state management for emergency proposals in the queue and execution

functions.

Impact

Recommendation

Developer Response

4. Low - Emergency proposals can be queued and executed multiple times by

vetoGuardian

Technical Detai ls

The queue function doesn’t check if an emergency proposal has already been executed:1

https://github.com/OlympusDAO/olympus-v3/pull/13

function queue(uint256 proposalId) external {

 // ... (other checks)

 if (_isEmergency()) {

 // In an emergency state, only the veto guardian can queue proposals

 if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

 }

 // ... rest code

}

The execute function similarly doesn’t prevent re-execution of emergency proposals:

function execute(uint256 proposalId) external payable {

 // ... (other checks)

 if (_isEmergency()) {

 // In an emergency state, only the veto guardian can queue proposals

 if (msg.sender != vetoGuardian) revert GovernorBravo_OnlyVetoGuardian();

 }

 // ... rest code

}

This oversight allows the veto guardian to queue and execute the same emergency

proposal multiple times, potentially leading to unintended repeated actions.

2

Low. While this bug doesn’t directly compromise funds or core functionality, it allows for the

repetition of emergency actions, which could have significant consequences depending on

the nature of the proposal. This could lead to unintended state changes or repeated

transactions meant to be executed only once.

 contract Testor {

 uint public balance;

 function test() external payable {

 balance += msg.value;

 }

 }

 ...

 function testSingleProposalMultiExecutions() public {

 // Burn all gOHM

 gohm.burn(address(0), gohm.balanceOf(address(0)));

 gohm.burn(alice, gohm.balanceOf(alice));

 address[] memory targets = new address[](1);

 uint256[] memory values = new uint256[](1);

 string[] memory signatures = new string[](1);

 bytes[] memory calldatas = new bytes[](1);

 targets[0] = address(testor);

 values[0] = 100 ether;

 signatures[0] = "test()";

 calldatas[0] = "";

 vm.startPrank(vetoGuardian);

 bytes memory data = address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature(

 "emergencyPropose(address[],uint256[],string[],bytes[])",

 targets,

 values,

Impact

POC

 signatures,

 calldatas

)

);

 uint256 proposalId = abi.decode(data, (uint256));

 address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature("queue(uint256)", proposalId)

);

 vm.roll(block.number + 72002);

 vm.warp(block.timestamp + 1 days + 1);

 vm.deal(vetoGuardian, 1000 ether);

 data = address(governorBravoDelegator).functionCallWithValue(

 abi.encodeWithSignature(

 "execute(uint256)",

 proposalId

),

 100 ether

);

 address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature("queue(uint256)", proposalId)

);

 vm.roll(block.number + 72002);

 vm.warp(block.timestamp + 1 days + 1);

 data = address(governorBravoDelegator).functionCallWithValue(

 abi.encodeWithSignature(

 "execute(uint256)",

 proposalId

),

 100 ether

);

 vm.stopPrank();

 data = address(governorBravoDelegator).functionCall(

 abi.encodeWithSignature(

 "getVoteOutcome(uint256)",

 proposalId

)

);

 bool status = abi.decode(data, (bool));

 console2.log("status", status);

 }

Modify the queue and execute functions to prevent re-queueing and re-executing emergency

proposals.

Fixed in PR#13.

GovernorBravoDelegator.fallback can be optimized to reduce its gas consumption.

Given that no other Solidity is executed after implementation.delegatecall(msg.data) , the

method’s inline assembly block needn’t respect Solidity’s memory conventions.

mload(0x40) may be removed, and returndata may be written starting from memory’s 0-byte,

as the method’s execution is sure to halt at the end of the assembly block.

Recommendation

Developer Response

Gas Saving Findings

1. Gas - Optimize GovernorBravoDelegator.fallback

Technical Detai ls

https://github.com/OlympusDAO/olympus-v3/pull/13
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegator.sol#L83-L99

Gas savings

Remove the unnecessary MLOAD operation and write the delegatecall’s return data starting

from memory’s 0 byte. Reference OpenZeppelin’s Proxy.sol as an example.

Acknowledged.

GovernorBravoDelegator.delegateTo can be optimized to reduced its gas consumption.

When checking if a value is equal to 0 in inline assembly, the ISZERO opcode should be

employed because the contract uses eq(success, 0) , an unnecessary PUSH0 operation is

executed.

Gas savings

Modify GovernorBravoDelegator.delegateTo as follows:

function delegateTo(address callee, bytes memory data) internal {

(bool success, bytes memory returnData) = callee.delegatecall(data);

assembly {

- if eq(success, 0) {

+ if iszero(success) {

revert(add(returnData, 0x20), returndatasize())

}

}

}

Acknowledged.

Impact

Recommendation

Developer Response

2. Gas - Optimize GovernorBravoDelegator.delegateTo

Technical Detai ls

Impact

Recommendation

Developer Response

3. Gas - Cache external call results

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/Proxy.sol#L34-L43
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegator.sol#L69-L75

GovernorBravoDelegate.propose executes getProposalThresholdVotes twice (1, 2).

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L129
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L798-L800
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L138
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L179

GovernorBravoDelegate.propose calls internally getProposalThresholdVotes , which executes an

external static call to gOHM.totalSupply . Because the supply of gOHM cannot change between

the two external calls, the call’s return value should be cached and used multiple times.

Gas savings

Within GovernorBravoDelegate.propose implement the following changes:

 function propose(

 address[] memory targets,

 uint256[] memory values,

 string[] memory signatures,

 bytes[] memory calldatas,

 string memory description

) public returns (uint256) {

 if (_isEmergency()) revert GovernorBravo_Emergency_SupplyTooLow();

 // Allow addresses above proposal threshold and whitelisted addresses to propose

- if (gohm.getPriorVotes(msg.sender, block.number - 1) <=

getProposalThresholdVotes())

+ uint256 proposalThresholdVotes = getProposalThresholdVotes();

+ if (gohm.getPriorVotes(msg.sender, block.number - 1) <= proposalThresholdVotes)

 revert GovernorBravo_Proposal_ThresholdNotMet();

 // snip

 {

 // Given Olympus's dynamic supply, we need to capture quorum and proposal

thresholds in terms

 // of the total supply at the time of proposal creation.

- uint256 proposalThresholdVotes = getProposalThresholdVotes();

 Proposal storage newProposal = proposals[newProposalID];

 // snip

Technical Detai ls

Impact

Recommendation

Acknowledged.

GovernorBravoDelegate uses proposal.eta same storage variable multiple times inside loop.

As proposal.eta is same for all the targets of a proposal, hence during function call of

GovernorBravoDelegate.veto, GovernorBravoDelegate.execute and

GovernorBravoDelegate.cancel it can be caches in memory.

Gas Saving

+ uint256 eta = proposal.eta;

 for (uint256 i = 0; i < proposal.targets.length; i++) {

 timelock.cancelTransaction(

 proposalId,

 proposal.targets[i],

 proposal.values[i],

 proposal.signatures[i],

 proposal.calldatas[i],

- proposal.eta,

+ eta

);

 }

Acknowledged.

Some if-statement conditions may be simplified to reduce the system’s gas consumption.

Developer Response

4. Gas - Cache frequently used storage variables

Technical Detai ls

Impact

Recommendation

Developer Response

5. Gas - Simply if-statement conditions

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L438
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L438
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L370
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L405

GovernorBravoDelegate.sol#L923-L925 : remove proposal.targets.length > 0 . This

condition is always true for an existing proposal as no proposal with

proposal.targets.length == 0 can be created via GovernorDelegate.propose or

GovernorDelegate.emergencyPropose .

GovernorBravoDelegate.sol#L936 : remove one between !proposal.votingStarted and

proposal.endBlock == 0 . These two conditions are equivalent, given that both proposal

variables are only written to during GovernorBravoDelegate.activate

Gas savings.

Simplify the shown if-statement conditions.

Acknowledged.

activationGracePeriod_ is the only value not checked to be within an appropriate range within

GovernorBravoDelegator.initialize .

Within GovernorBravoDelegator.initialize , all parameters except activationGracePeriod_ are

checked to be set to appropriate values.

Informational.

Add checks to validate activationGracePeriod_ is set to an acceptable value.

Acknowledged.

Technical Detai ls

Impact

Recommendation

Developer Response

Informational Findings

1. Informational - Missing bound checks for activationGracePeriod_

Technical Detai ls

Impact

Recommendation

Developer Response

2. Informational - Duplicate code

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L923-L925
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L145
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L236
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L936
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L296-L297
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L85
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L78

The same code snippets can be found in different sections of the in-scope contracts.

GovernorBravoDelegate.propose and GovernorBravoDelegate.emergencyPropose both verify the

input arrays’ lengths (1, 2) and calculate the targets codehashes (1, 2)

Informational.

Implement internal functions to execute common operations.

Acknowledged.

Misleading and missing comments in GovernorBravoDelegate contract.

Several comments in the GovernorBravoDelegate contract are inaccurate or inconsistent with

the code:

execute: Comment mentions queueing instead of executing.

propose: Invalid comment mentioning capture of quorum at time of proposal.

propose: Comment refers to non-existent whitelist check.

activate: Missing natspec @param

castVoteBySig: Missing natspec @param

Technical Detai ls

Impact

Recommendation

Developer Response

3. Informational - Misleading comments

Technical Detai ls

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L129
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L220
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L140-L146
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L230-L237
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L165-L174
https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L245-L253
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L374
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L177
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L137
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L287
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L519

Informational

Review and update comments to accurately reflect the code’s behavior. Ensure consistency

across similar functions.

Acknowledged.

GovernorBravoDelegate._isHighRiskProposal implements logic to identify delicate proposals, for

which a higher quorum level may be required.

In case a proposal’s transaction has Olympus’s Kernel contract as target , some additional

checks are executed to understand whether a call to the executeAction method should make

the method return true .

Given that executeAction accepts an element of the Kernel.Actions enum, the method

executes custom checks based on the enum’s variant provided by a given transaction. The

method fails to execute any check in the case action == Action.InstallModule leads the

Kernel contract to store a given address as a new module and call its INIT method.

Informational. The method shown isn’t currently used in in-scope contracts.

Given the changes executed by the Action.InstallModule ,

GovernorBravoDelegate._isHighRiskProposal should return true if action == 0 .

This is actually correct behavior. This isn’t much risk in installing a new module. They cannot

interact with existing modules. Upgrading a module on the other hand is risky since it can

affect existing system behavior.

Impact

Recommendation

Developer Response

4. Informational - GovernorBravoDelegate._isHighRiskProposal returns false for

InstallModule Kernel action

Technical Detai ls

Impact

Recommendation

Developer Response

5. Informational - Ambiguous proposal expiration conditions

https://github.com/OlympusDAO/olympus-v3/blob/85f72be307e090fc7252f3d66e93aa8082094056/src/external/governance/GovernorBravoDelegate.sol#L710
https://etherscan.io/address/0x2286d7f9639e8158FaD1169e76d1FbC38247f54b

GovernorBravoDelegate considers a queued proposal expired in a different manner than

Timelock considers a transaction stale: for one block, the two contracts contradict

themselves on the status of a given proposal.

GovernorBravoDelegate.state considers a proposal Expired if block.timestamp >=

proposal.eta + timelock.GRACE_PERIOD()

Timelock.execute considers a transaction Stale if block.timestamp > eta + GRACE_PERIOD

Informational.

Select a uniform way to consider a proposal and its transactions expired.

Fixed in PR#13.

OlympusDAO has selected a solid and battle-tested option to implement its on-chain

governance system. The review has identified some issues within edge cases for the

functionalities added by the client, which can lead to an inability to execute proposals when

the system enters the emergency state or allow an attacker to brick a proposal’s execution

under rare conditions.

Additionally, the review has identified a theoretical attack vector by which an attacker can

inflate or deflate a proposal’s quorum requirements: at the time of the report’s writing, the

largest relative manipulation possible was around 1% of the non-manipulated amount.

Overall, the system lies on solid foundations that have proven reliable for normal state

operations. In the case of emergency state operations, additional care and testing should be

applied to verify that the system processes proposals correctly, both when their entire life

cycle occurs with the system in emergency state and when the system switches state during

it.

Technical Detai ls

Impact

Recommendation

Developer Response

Final remarks

https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/GovernorBravoDelegate.sol#L951-L953
https://github.com/OlympusDAO/olympus-v3/blob/master/src/external/governance/Timelock.sol#L162
https://github.com/OlympusDAO/olympus-v3/pull/13

